En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Approximation of Stieltjes matrix functions by rational Gauss-type quadrature rules

Bookmarks Report an error
Multi angle
Authors : Reichel, Lothar (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This talk is concerned with the inexpensive approximation of expressions of the form $I(f)=$ $v^{T} f(A) v$, when $A$ is a large symmetric positive definite matrix, $v$ is a vector, and $f(t)$ is a Stieltjes function. We are interested in the situation when $A$ is too large to make the evaluation of $f(A)$ practical. Approximations of $I(f)$ are computed with the aid of rational Gauss quadrature rules. Error bounds or estimates of bounds are determined with rational Gauss-Radau or rational anti-Gauss rules.

Keywords : Stieltjes function; rational Gauss quadrature

MSC Codes :
65D15 - Algorithms for functional approximation
65D32 - Quadrature and cubature formulas
65F20 - Overdetermined systems, pseudoinverses

    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 26/11/2021
    Conference Date : 09/11/2021
    Subseries : Research talks
    arXiv category : Numerical Analysis
    Mathematical Area(s) : Numerical Analysis & Scientific Computing
    Format : MP4 (.mp4) - HD
    Video Time : 00:27:28
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-11-09_Reichel.mp4

Information on the Event

Event Title : Numerical Methods and Scientific Computing / Méthodes numériques et calcul scientifique
Event Organizers : Beckermann, Bernhard ; Brezinski, Claude ; da Rocha, Zélia ; Redivo-Zaglia, Michela ; Rodriguez, Giuseppe
Dates : 08/11/2021 - 12/11/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2431.html

Citation Data

DOI : 10.24350/CIRM.V.19829603
Cite this video as: Reichel, Lothar (2021). Approximation of Stieltjes matrix functions by rational Gauss-type quadrature rules. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19829603
URI : http://dx.doi.org/10.24350/CIRM.V.19829603

See Also

Bibliography

  • FROMMER, Andreas et SCHWEITZER, Marcel. Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions. BIT Numerical Mathematics, 2016, vol. 56, no 3, p. 865-892. - http://dx.doi.org/10.1007/s10543-015-0596-3

  • GOLUB, Gene H. et MEURANT, Gérard. Matrices, moments and quadrature with applications. Princeton University Press, 2009. - https://doi.org/10.1515/9781400833887

  • PRANIC, Miroslav S. et REICHEL, Lothar. Rational Gauss quadrature. SIAM Journal on Numerical Analysis, 2014, vol. 52, no 2, p. 832-851. - https://doi.org/10.1137/120902161



Bookmarks Report an error