En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Merging rate of opinions via optimal transport on random measures

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Catalano, Marta (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : The Bayesian approach to inference is based on a coherent probabilistic framework that naturally leads to principled uncertainty quantification and prediction. Via posterior distributions, Bayesian nonparametric models make inference on parameters belonging to infinite-dimensional spaces, such as the space of probability distributions. The development of Bayesian nonparametrics has been triggered by the Dirichlet process, a nonparametric prior that allows one to learn the law of the observations through closed-form expressions. Still, its learning mechanism is often too simplistic and many generalizations have been proposed to increase its flexibility, a popular one being the class of normalized completely random measures. Here we investigate a simple yet fundamental matter: will a different prior actually guarantee a different learning outcome? To this end, we develop a new distance between completely random measures based on optimal transport, which provides an original framework for quantifying the similarity between posterior distributions (merging of opinions). Our findings provide neat and interpretable insights on the impact of popular Bayesian nonparametric priors, avoiding the usual restrictive assumptions on the data-generating process. This is joint work with Hugo Lavenant.

    Keywords : Bayesian nonparametrics; completely random measures; Cox process; merging of opinions; optimal transport; Wasserstein distance

    Codes MSC :
    60G55 - Point processes
    60G57 - Random measures
    62C10 - Bayesian problems; characterization of Bayes procedures
    49Q22 - Optimal transportation

      Informations sur la Vidéo

      Réalisateur : Récanzone, Luca
      Langue : Anglais
      Date de publication : 27/11/2023
      Date de captation : 30/10/2023
      Sous collection : Research School
      arXiv category : Statistics Theory ; Probability
      Domaine : Probability & Statistics
      Format : MP4 (.mp4) - HD
      Durée : 00:47:54
      Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
      Download : https://videos.cirm-math.fr/2023-10-30_Catalano.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Autumn school in Bayesian Statistics / École d'automne en statistique bayésienne
    Organisateurs de la rencontre : Arbel, Julyan ; Etienne, Marie-Pierre ; Filippi, Sarah ; Kon Kam King, Guillaume ; Ryder, Robin ; Ancelet, Sophie ; Bardenet, Rémi ; Bonnet, Anna ; Jacob, Pierre
    Dates : 30/10/2023 - 03/11/2023
    Année de la rencontre : 2023
    URL Congrès : https://conferences.cirm-math.fr/2881.html

    Données de citation

    DOI : 10.24350/CIRM.V.20107203
    Citer cette vidéo: Catalano, Marta (2023). Merging rate of opinions via optimal transport on random measures. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20107203
    URI : http://dx.doi.org/10.24350/CIRM.V.20107203

    Voir aussi

    Bibliographie

    • CATALANO, Marta et LAVENANT, Hugo. Merging Rate of Opinions via Optimal Transport on Random Measures. arXiv preprint arXiv:2305.06116, 2023. - https://arxiv.org/abs/2305.06116



    Imagette Video

    Sélection Signaler une erreur
    Close