En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The infinite bin model, old and new

Sélection Signaler une erreur
Multi angle
Auteurs : Ramassamy, Sanjay (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The infinite bin model (IBM) is a family of ranked-biased branching random walks on the integers, parameterized by a probability distribution on positive integers. Alternatively it may be seen as a family of interacting particle systems, depicted as balls inside bins. The speed of the front of the IBM depends on the probability distribution which parameterizes it. I will first review some special cases that have been known for some time: the IBM parameterized by the uniform distribution on some finite interval of integers [1,N], which is nothing but a branching random walk with selection, and the IBM parameterized by a geometric distribution, which can be coupled with last passage percolation on the complete graph. Then I will discuss long memory properties of the IBM, in particular whether a site may reproduce infinitely often or not. Finally I will discuss a hydrodynamic limit of the IBM where one can explicitly compute the speed of the front. In that case, a wall-crossing phenomenon appears and Dyck paths come into play. The talk is based on joint works with Bastien Mallein (Université Toulouse III Paul Sabatier), Arvind Singh (CNRS and Université Paris-Saclay) and Benjamin Terlat (Université Paris-Saclay).

Keywords : infinite bin model; branching random walk; last passage percolation; wall-crossing phenomenon

Codes MSC :
06A07 - Combinatorics of partially ordered sets
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
82C22 - Interacting particle systems

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 03/07/2025
    Date de captation : 16/06/2025
    Sous collection : Research talks
    arXiv category : Probability ; Mathematical Physics ; Combinatorics
    Domaine : Combinatorics ; Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:01:37
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-06-16_Ramassamy.mp4

Informations sur la Rencontre

Nom de la rencontre : Perfectly matched perspectives on statistical mechanics, combinatorics and geometry / Perspectives couplées sur la mécanique statistique, la combinatoire et la géométrie
Organisateurs de la rencontre : Boutillier, Cédric ; Chhita, Sunil ; George, Terrence ; Li, Zhongyang ; Tilière, Béatrice de
Dates : 16/06/2025 - 20/06/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3178.html

Données de citation

DOI : 10.24350/CIRM.V.20364603
Citer cette vidéo: Ramassamy, Sanjay (2025). The infinite bin model, old and new. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20364603
URI : http://dx.doi.org/10.24350/CIRM.V.20364603

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur