En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    2

    The conjugacy problem for polynomially growing elements of Out(Fn)

    Sélection Signaler une erreur
    Post-edited
    Auteurs : Feighn, Mark (Auteur de la Conférence)
    CIRM (Editeur )

    This video file cannot be played.(Error Code: 102630)
    Conjugacy problem for Out (Fn) Eigengraphs and invariants Whitehead's theorem and reduction Algebraic invariants Induction Understanding rays

    Résumé : (joint work with Michael Handel) Out(Fn):=Aut(Fn)/Inn(Fn) denotes the outer automorphism group of the rank n free group Fn. An element f of Out(Fn) is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by f. The existence in Out(Fn),n>2, of elements with non-linear polynomial growth is a feature of Out(Fn) not shared by mapping class groups of surfaces.
    To avoid some finite order behavior, we restrict attention to the subset UPG(Fn) of Out(Fn) consisting of polynomially growing elements whose action on H1(Fn,Z) is unipotent. In particular, if f is polynomially growing and acts trivially on H1(Fn,Z3) then f is in UPG(Fn) and further every polynomially growing element of Out(Fn) has a power that is in UPG(Fn). The goal of the talk is to describe an algorithm to decide given f,g in UPG(Fn) whether or not there is h in Out(Fn) such that hfh1=g.
    The conjugacy problem for linearly growing elements of UPG(Fn) was solved by Cohen-Lustig. Krstic-Lustig-Vogtmann solved the case of linearly growing elements of Out(Fn).
    A key technique is our use of train track representatives for elements of Out(Fn), a method pioneered by Bestvina-Handel in the early 1990s that has since been ubiquitous in the study of Out(Fn).

    Keywords : Out(Fn); conjugacy problem; train tracks

    Codes MSC :
    20F65 - Geometric group theory
    57M07 - Topological methods in group theory

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 18/07/2019
      Date de captation : 17/06/2019
      Sous collection : Research talks
      arXiv category : Group Theory
      Domaine : Algebra ; Topology
      Format : MP4 (.mp4) - HD
      Durée : 00:55:29
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2019-06-17_Feighn.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Aspects of Non-Positive and Negative Curvature in Group Theory / Courbure négative et courbure négative ou nulle en théorie des groupes
    Organisateurs de la rencontre : Bromberg, Kenneth ; Hilion, Arnaud ; Kazachkov, Ilya ; Sageev, Michah ; Tao, Jing
    Dates : 17/06/2019 - 21/06/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/1958.html

    Données de citation

    DOI : 10.24350/CIRM.V.19539203
    Citer cette vidéo: Feighn, Mark (2019). The conjugacy problem for polynomially growing elements of Out(Fn). CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19539203
    URI : http://dx.doi.org/10.24350/CIRM.V.19539203

    Voir aussi

    Bibliographie



    Sélection Signaler une erreur
    Close