Authors : ... (Author of the conference)
... (Publisher )
Abstract :
Reid's recipe is an equivalent of the McKay correspondence in dimension three. It marks interior line segments and lattice points in the fan of the G-Hilbert scheme (a specific crepant resolution of $\mathbb{C}^{3} / G$ for $G \subset S L(3, \mathbb{C})$ ) with characters of irreducible representations of $G$. Our goal is to generalise this by marking the toric fan of a crepant resolution of any affine Gorenstein singularity, in a way that is compatible with both the G-Hilbert case and its categorical counterpart known as Derived Reid's Recipe. To achieve this, we foray into the combinatorial land of quiver moduli spaces and dimer models. This is joint work with Alastair Craw and Jesus Tapia Amador.
Keywords : Reid's recipe; dimer model; quiver moduli space
MSC Codes :
14M25
- Toric varieties, Newton polyhedra
16G20
- Representations of quivers and partially ordered sets
16E35
- Derived categories in associative algebra
14E16
- McKay correspondence
Language : English
Available date : 15/12/2022
Conference Date : 29/11/2022
Subseries : Research talks
arXiv category : Algebraic Geometry
Mathematical Area(s) : Algebraic & Complex Geometry
Format : MP4 (.mp4) - HD
Video Time : 00:38:38
Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
Download : https://videos.cirm-math.fr/2022-29-11_Heuberger.mp4
|
Event Title : Algebraic Geometry and Complex Geometry 2022 / Géométrie Algébrique et Géométrie Complexe 2022 Dates : 28/11/2022 - 02/12/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2605.html
DOI : 10.24350/CIRM.V.19983603
Cite this video as:
(2022). Combinatorial Reid's recipe for consistent dimer models. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19983603
URI : http://dx.doi.org/10.24350/CIRM.V.19983603
|
See Also
Bibliography
- AMADOR, Jesus Tapia, HEUBERGER, Liana, et CRAW, Alastair. Combinatorial Reid's recipe for consistent dimer models. Épijournal de Géométrie Algébrique, 2021, vol. 5. - https://doi.org/10.46298/epiga.2021.volume5.6085
- ISHII, A. et UEDA, K. On moduli spaces of quiver representations associated with brane tilings Higher dimensional algebraic varieties and vector bundles, 127141, RIMS Kokyuroku Bessatsu, B9. Res. Inst. Math. Sci.(RIMS), Kyoto, 2008. - http://hdl.handle.net/2433/176749
- CRAW, Alastair. An explicit construction of the McKay correspondence for A-Hilb C3. Journal of Algebra, 2005, vol. 285, no 2, p. 682-705. - https://doi.org/10.1016/j.jalgebra.2004.10.001
- BOCKLANDT, Raf, CRAW, Alastair, et QUINTERO VÉLEZ, Alexander. Geometric Reid's recipe for dimer models. Mathematische Annalen, 2015, vol. 361, no 3, p. 689-723. - http://dx.doi.org/10.1007/s00208-014-1085-8
- BOCKLANDT, Raf, CRAW, Alastair, et QUINTERO VÉLEZ, Alexander. Correction to: Geometric Reid's recipe for dimer models. Mathematische Annalen, 2021, vol. 380, no 1, p. 911-913. - http://dx.doi.org/10.1007/s00208-020-02127-w
- CAUTIS, Sabin, CRAW, Alastair, et LOGVINENKO, Timothy. Derived Reid's recipe for abelian subgroups of SL3 (ℂ). Journal für die reine und angewandte Mathematik (Crelles Journal), 2017, vol. 2017, no 727, p. 1-48. - https://doi.org/10.1515/crelle-2014-0086