Authors : ... (Author of the conference)
... (Publisher )
Abstract :
Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy
$ \sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$
is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, Ostrowski and Kesten characterized the intervals with this property.
We will discuss the bounded remainder property for sets in higher dimensions. In particular, we will see that parallelotopes spanned by vectors in $\mathbb{Z}\alpha + \mathbb{Z}^d$ have bounded remainder. Moreover, we show that this condition can be established by exploiting a connection between irrational rotation on $\mathbb{T}^d$ and certain cut-and-project sets. If time allows, we will discuss bounded remainder sets for the continuous irrational rotation $\lbrace t \alpha : t$ $\epsilon$ $\mathbb{R}^+\rbrace$ in two dimensions.
MSC Codes :
11J71
- Distribution modulo one
11K06
- General theory of distribution modulo 1
11K38
- Irregularities of distribution, discrepancy
Language : English
Available date : 01/06/17
Conference Date : 25/05/17
Subseries : Research talks
arXiv category : Number Theory
Mathematical Area(s) : Number Theory
Format : MP4 (.mp4) - HD
Video Time : 00:32:39
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2017-05-25_Grepstad.mp4
|
Event Title : Prime numbers and automatic sequences: determinism and randomness / Nombres premiers et suites automatiques : aléa et déterminisme Dates : 22/05/17 - 26/05/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1595.html
DOI : 10.24350/CIRM.V.19172203
Cite this video as:
(2017). Bounded remainder sets for the discrete and continuous irrational rotation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19172203
URI : http://dx.doi.org/10.24350/CIRM.V.19172203
|
See Also
Bibliography