En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Heuristics for boundedness of ranks of elliptic curves

Bookmarks Report an error
Post-edited
Authors : Poonen, Bjorn (Author of the conference)
CIRM (Publisher )

Loading the player...
class groups Cohen-Lenstra heuristics elliptic curves Tate-Shafarevich groups modelling ranks of elliptic curves calibration of the functions $n(H)$ and $X(H)$ Questions elliptic curves over number fields

Abstract : We present heuristics that suggest that there is a uniform bound on the rank of $E(\mathbb{Q})$ as $E$ varies over all elliptic curves over $\mathbb{Q}$. This is joint work with Jennifer Park, John Voight, and Melanie Matchett Wood.

MSC Codes :
11G05 - Elliptic curves over global fields
11G40 - $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11R29 - Class numbers, class groups, discriminants
11R45 - Density theorems
14H52 - Elliptic curves

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Conference Date : 28/09/16
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-09-28_Poonen.mp4

Information on the Event

Event Title : Rational points and algebraic geometry / Points rationnels et géométrie algébrique
Event Organizers : Harari, David ; Skorobogatov, Alexei
Dates : 26/09/16 - 30/09/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1503.html

Citation Data

DOI : 10.24350/CIRM.V.19056403
Cite this video as: Poonen, Bjorn (2016). Heuristics for boundedness of ranks of elliptic curves. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19056403
URI : http://dx.doi.org/10.24350/CIRM.V.19056403

See Also

Bibliography



Bookmarks Report an error