Auteurs : Pilatte, Cédric (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
Let $\lambda$ be the Liouville function, defined by $\lambda(n) = (-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative Let $\lambda$ be the Liouville function, defined by $\lambda(n)=(-1)^{\Omega(n)}$ where $\Omega(n)$ is the number of prime factors of $n$ (with multiplicity). This completely multiplicative function is believed to exhibit pseudo-random statistical properties. For example, its partial sums are conjectured to obey the square-root cancellation estimate $\sum_{n \leq x} \lambda(n)=O\left(x^{1 / 2+\varepsilon}\right)$; this is equivalent to the Riemann Hypothesis.
The Fourier uniformity conjecture (a close cousin of the Chowla and Sarnak conjectures) concerns the pseudo-random behaviour of the Liouville function in short intervals. In 2023, Walsh proved that, for $\exp \left((\log X)^{1 / 2+\varepsilon}\right) \leq H \leq X$,
$
\sum_{X \lt x \lt 2X} \sup _{\alpha \in \mathbb{R}}\left|\sum_{x\lt n \lt x+H} \lambda(n) e(n \alpha)\right|=o(H X)
$
as $X \rightarrow \infty$. This non-correlation estimate is expected to hold for any $H=H(X)$ tending arbitrarily slowly to infinity with $X$ : this is the Fourier uniformity conjecture.
We improve on Walsh's range, proving that the Fourier uniformity conjecture holds for intervals of length $H \geq \exp \left((\log X)^{2 / 5+\varepsilon}\right)$.
Keywords : Fourier uniformity conjecture; pseudorandomness; correlations; multiplicative functions; Matomäki-Radziwiłł theorem
Codes MSC :
11K65
- Arithmetic functions, See also {11Nxx}
11N37
- Asymptotic results on arithmetic functions
11N64
- Other results on the distribution of values or the characterization of arithmetic functions
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/3213/Slides/pilatte-slides.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Prime numbers and arithmetic randomness / Nombres premiers et aléa arithmétique Organisateurs de la rencontre : Elsholtz, Christian ; Ostafe, Alina ; Rivat, Joël ; Stoll, Thomas ; Swaenepoel, Cathy Dates : 23/06/2025 - 27/06/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3213.html
DOI : 10.24350/CIRM.V.20368203
Citer cette vidéo:
Pilatte, Cédric (2025). Improved bounds for the Fourier uniformity conjecture. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20368203
URI : http://dx.doi.org/10.24350/CIRM.V.20368203
|
Voir aussi
Bibliographie
- WALSH, Miguel N. Local uniformity through larger scales. Geometric and Functional Analysis, 2021, vol. 31, no 4, p. 981-991. - https://doi.org/10.1007/s00039-021-00570-8
- WALSH, Miguel N. Phase relations and pyramids. Journal of the European Mathematical Society, 2025. - https://doi.org/10.4171/jems/1613
- WALSH, Miguel N. Stability under scaling in the local phases of multiplicative functions. Inventiones mathematicae, 2025, p. 1-38. - https://doi.org/10.1007/s00222-025-01343-y
- MATOMÄKI, Kaisa, RADZIWIŁŁ, Maksym, TAO, Terence, et al. Higher uniformity of bounded multiplicative functions in short intervals on average. Annals of Mathematics, 2023, vol. 197, no 2, p. 739-857. - https://doi.org/10.4007/annals.2023.197.2.3