Authors : ... (Author of the conference)
... (Publisher )
Abstract :
In joint work with Konstanze Rietsch (arXiv:1712.00447), we use the $\mathcal{X}$-cluster structure on the Grassmannian and the combinatorics of plabic graphs to associate a Newton-Okounkov body to each $\mathcal{X}$-cluster. This gives, for each $\mathcal{X}$-cluster, a toric degeneration of the Grassmannian. We also describe the Newton-Okounkov bodies quite explicitly: we show that their facets can be read off from $\mathcal{A}$-cluster expansions of the superpotential. And we give a combinatorial formula for the lattice points of the Newton-Okounkov bodies, which has a surprising interpretation in terms of quantum Schubert calculus.
Keywords : Grassmannian; plabic graph; cluster chart; network chart; Newton-Okounkov body; $\mathcal{X}$-cluster; toric degeneration; $\mathcal{A}$-cluster
MSC Codes :
05E10
- Combinatorial aspects of representation theory
14M15
- Grassmannians, Schubert varieties, flag manifolds
14M25
- Toric varieties, Newton polyhedra
14M27
- Compactifications; symmetric and spherical varieties
Language : English
Available date : 28/03/2018
Conference Date : 21/03/2018
Subseries : Research talks
arXiv category : Algebraic Geometry ; Combinatorics
Mathematical Area(s) : Algebraic & Complex Geometry ; Combinatorics
Format : MP4 (.mp4) - HD
Video Time : 00:51:51
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2018-03-21_L_Williams.mp4
|
Event Title : Cluster algebras: twenty years on / Vingt ans d'algèbres amassées Dates : 19/03/2018 - 23/03/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1777.html
DOI : 10.24350/CIRM.V.19384003
Cite this video as:
(2018). Newton-Okounkov bodies for Grassmannians. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19384003
URI : http://dx.doi.org/10.24350/CIRM.V.19384003
|
See Also
Bibliography