https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Singular hyperbolicity and homoclinic tangencies of 3-dimensional flows
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Singular hyperbolicity and homoclinic tangencies of 3-dimensional flows

Bookmarks Report an error
Post-edited
Authors : Crovisier, Sylvain (Author of the conference)
CIRM (Publisher )

Loading the player...
dynamics of surface diffeomorphisms dynamics of 3-dimensional vector fields singular hyperbolicity dynamics far from homoclinic tangencies sectional flow uniform contraction

Abstract : The notion of singular hyperbolicity for vector fields has been introduced by Morales, Pacifico and Pujals in order to extend the classical uniform hyperbolicity and include the presence of singularities. This covers the Lorenz attractor. I will present a joint work with Dawei Yang which proves a dichotomy in the space of three-dimensional $C^{1}$-vector fields, conjectured by J. Palis: every three-dimensional vector field can be $C^{1}$-approximated by one which is singular hyperbolic or by one which exhibits a homoclinic tangency.

MSC Codes :
37C10 - Vector fields, flows, ordinary differential equations
37C29 - Homoclinic and heteroclinic orbits
37Dxx - Dynamical systems with hyperbolic behavior
37F15 - Expanding maps; hyperbolicity; structural stability

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/03/2017
    Conference Date : 21/02/2017
    Subseries : Research talks
    arXiv category : Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:31
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-02-21_Crovisier.mp4

Information on the Event

Event Title : Non uniformly hyperbolic dynamical systems. Coupling and renewal theory / Systèmes dynamiques non uniformement et partiellement hyperboliques. Couplage, renouvellement
Event Organizers : Troubetzkoy, Serge ; Vaienti, Sandro
Dates : 20/02/17 - 24/02/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1714.html

Citation Data

DOI : 10.24350/CIRM.V.19128603
Cite this video as: Crovisier, Sylvain (2017). Singular hyperbolicity and homoclinic tangencies of 3-dimensional flows. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19128603
URI : http://dx.doi.org/10.24350/CIRM.V.19128603

See Also

Bibliography

  • Afrajmovich, V.S., Bykov, V.V., & Shil'nikov, L.P. (1977). On the origin and structure of the Lorenz attractor. Soviet Physics. Doklady, 22, 253-255 - https://zbmath.org/?q=an:03706105

  • Crovisier, S., & Yang, D. (2017). Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields. - https://arxiv.org/abs/1702.05994

  • Guckenheimer, J., & Williams, R.F. (1979). Structural stability of Lorenz attractors. Publications Mathématiques, 50, 59-72 - http://dx.doi.org/10.1007/BF02684769

  • Morales, C.A., Pacifico, M.J., & Pujals, E.R. (2004). Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Annals of Mathematics. Second Series, 160(2), 375-432 - http://dx.doi.org/10.4007/annals.2004.160.375

  • Pujals, E.R., & Sambarino, M. (2000). Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Annals of Mathematics. Second Series, 151(3), 961-1023 - http://dx.doi.org/10.2307/121127



Bookmarks Report an error