En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A new complex spectrum associated to invisibility in waveguides

Bookmarks Report an error
Multi angle
Authors : Bonnet-Ben Dhia, Anne-Sophie (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.

MSC Codes :
35B40 - Asymptotic behavior of solutions of PDE
35J05 - Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
35Q35 - PDEs in connection with fluid mechanics
41A60 - Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
47H10 - Fixed-point theorems
65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
76Q05 - Hydro- and aero-acoustics

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/06/17
    Conference Date : 08/06/17
    Subseries : Research talks
    arXiv category : Numerical Analysis ; Analysis of PDEs
    Mathematical Area(s) : PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:45:04
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-06-08_Bonnet-Ben_Dhia.mp4

Information on the Event

Event Title : Mathematical aspects of physics with non-self-adjoint operators / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints
Event Organizers : Krejcirik, David ; Siegl, Petr
Dates : 05/06/17 - 09/06/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1596.html

Citation Data

DOI : 10.24350/CIRM.V.19181803
Cite this video as: Bonnet-Ben Dhia, Anne-Sophie (2017). A new complex spectrum associated to invisibility in waveguides. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19181803
URI : http://dx.doi.org/10.24350/CIRM.V.19181803

See Also

Bibliography



Bookmarks Report an error