Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
In this joint work with Athanasios Tzavaras (KAUST) and Corrado Lattanzio (L'Aquila) we develop a relative entropy framework for Hamiltonian flows that in particular covers the Euler-Korteweg system, a well-known diffuse interface model for compressible multiphase flows. We put a particular emphasis on extending the relative entropy framework to the case of non-monotone pressure laws which make the energy functional non-convex.The relative entropy computation directly implies weak (entropic)-strong uniqueness, but we will also outline how it can be used in other contexts. Firstly, we describe how it can be used to rigorously show that in the large friction limit solutions of Euler-Korteweg converge to solutions of the Cahn-Hilliard equation. Secondly, we explain how the relative entropy can be used for obtaining a posteriori error estimates for numerical approximation schemes.
Mots-Clés : Euler-Korteweg; relative entropy; weak-strong uniqueness
Codes MSC :
76D45
- Capillarity, See also {76B45}
35Q31
- Euler equations
76T10
- Liquid-gas two-phase flows, bubbly flows
|
Informations sur la Rencontre
Nom de la Rencontre : Inhomogeneous Flows: Asymptotic Models and Interfaces Evolution / Fluides inhomogènes : modèles asymptotiques et évolution d'interfaces Dates : 23/09/2019 - 27/09/2019
Année de la rencontre : 2019
URL de la Rencontre : https://conferences.cirm-math.fr/1919.html
DOI : 10.24350/CIRM.V.19562803
Citer cette vidéo:
(2019). Relative entropy for the Euler-Korteweg system with non-monotone pressure. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19562803
URI : http://dx.doi.org/10.24350/CIRM.V.19562803
|
Voir Aussi
Bibliographie
- J. Giesselmann, A. E. Tzavaras. Stability properties of the Euler-Korteweg system with nonmonotone pressures. Appl. Anal. 96 (2017), no. 9, 1528–1546. - https://doi.org/10.1080/00036811.2016.1276175
- J. Giesselmann, C. Lattanzio, A. E. Tzavaras. Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484. - https://doi.org/10.1007/s00205-016-1063-2