En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Manage my selections

  • z

    Destination de la recherche

    Raccourcis

    1

    Change: detection, estimation, segmentation

    Bookmarks Report an error
    Virtualconference
    Authors : Siegmund, David (Author of the conference)
    CIRM (Publisher )

    00:00
    00:00
     

    Abstract : The maximum score statistic is used to detect and estimate changes in the level, slope, or other local feature of a sequance of observations, and to segment the sequence xhen there appear to be multiple changes. Control of false positive errors when observations are auto-correlated is achieved by using a first order autoregressive model. True changes in level or slope can lead to badly biased estimates of the autoregressive parameter and variance, which can result in a loss of power. Modifications of the natural estimators to deal with this difficulty are partially successful. Applications to temperature time series, atmospheric CO2 levels, COVID-19 incidence, excess deaths, copy number variations, and weather extremes illustrate the general theory.
    This is joint research with Xiao Fang.

    Keywords : Change point; broken line; segmentation

    MSC Codes :
    62H10 - Distribution of statistics
    62J02 - General nonlinear regression
    62L10 - Sequential analysis

    Additional resources :
    https://www.cirm-math.fr/RepOrga/2146/Slides/Siegmund_talkluminy20.pdf

      Information on the Video

      Film maker : Hennenfent, Guillaume
      Language : English
      Available date : 15/06/2020
      Conference Date : 08/06/2020
      Subseries : Research talks
      arXiv category : Statistics Theory
      Mathematical Area(s) : Probability & Statistics
      Format : MP4 (.mp4) - HD
      Video Time : 00:38:00
      Targeted Audience : Researchers
      Download : https://videos.cirm-math.fr/2020-06-08_Siegmund.mp4

    Information on the Event

    Event Title : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
    Event Organizers : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
    Dates : 15/06/2020 - 19/06/2020
    Event Year : 2020
    Event URL : https://www.cirm-math.com/cirm-virtual-...

    Citation Data

    DOI : 10.24350/CIRM.V.19643303
    Cite this video as: Siegmund, David (2020). Change: detection, estimation, segmentation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19643303
    URI : http://dx.doi.org/10.24350/CIRM.V.19643303

    See Also

    Bibliography

    • FANG, Xiao, LI, Jian, et SIEGMUND, David. Segmentation and estimation of change-point models: false positive control and confidence regions. arXiv preprint arXiv:1608.03032, 2016. - https://arxiv.org/abs/1608.03032

    • FANG, Xiao et SIEGMUND, David. Detection and Estimation of Local Signals. arXiv preprint arXiv:2004.08159, 2020. - https://arxiv.org/abs/2004.08159

    • FRYZLEWICZ, Piotr, et al. Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 2014, vol. 42, no 6, p. 2243-2281. - http://dx.doi.org/10.1214/14-AOS1245

    • OLSHEN, Adam B., VENKATRAMAN, E. S., LUCITO, Robert, et al. Circular binary segmentation for the analysis of array‐based DNA copy number data. Biostatistics, 2004, vol. 5, no 4, p. 557-572. - https://doi.org/10.1093/biostatistics/kxh008

    • ZHANG, Nancy R., SIEGMUND, David O., JI, Hanlee, et al. Detecting simultaneous changepoints in multiple sequences. Biometrika, 2010, vol. 97, no 3, p. 631-645. - https://dx.doi.org/10.1093%2Fbiomet%2Fasq025



    Imagette Video

    Bookmarks Report an error
    Close