En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Geometric control and sub-Riemannian geodesics - Part I

Bookmarks Report an error
Multi angle
Authors : Rifford, Ludovic (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This will be an introduction to sub-Riemannian geometry from the point of view of control theory. We will define sub-Riemannian structures and prove the Chow Theorem. We will describe normal and abnormal geodesics and discuss the completeness of the Carnot-Carathéodory distance (Hopf-Rinow Theorem). Several examples will be given (Heisenberg group, Martinet distribution, Grusin plane).

MSC Codes :
49Jxx - Existence theory for optimal solutions
53C17 - Sub-riemannian geometry

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 08/09/14
    Conference Date : 01/09/14
    Subseries : Research talks
    arXiv category : Optimization and Control ; Differential Geometry
    Mathematical Area(s) : Geometry ; Control Theory & Optimization
    Format : MP4 (.mp4) - HD
    Video Time : 01:19:55
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-09-01_Rifford.mp4

Information on the Event

Event Title : Sub-Riemannian manifolds : from geodesics to hypoelliptic diffusion / Géométrie sous-riemannienne : des géodésiques aux diffusions hypoelliptiques
Event Organizers : Agrachev, Andrei ; Boscain, Ugo ; Jean, Frédéric ; Sigalotti, Mario
Dates : 01/09/14 - 05/09/14
Event Year : 2014
Event URL : http://www.cmap.polytechnique.fr/subriem...

Citation Data

DOI : 10.24350/CIRM.V.18598903
Cite this video as: Rifford, Ludovic (2014). Geometric control and sub-Riemannian geodesics - Part I. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18598903
URI : http://dx.doi.org/10.24350/CIRM.V.18598903

Bibliography



Bookmarks Report an error