En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Transfer operators for Sinai billiards - lecture 1

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Baladi, Viviane (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

    Keywords : dynamical systems; billiards; transfer operators

    Codes MSC :
    37B40 - Topological entropy
    37C30 - Zeta functions, (Ruelle-Frobenius) transfer operators, and other functional analytic techniques in dynamical systems
    37D50 - Hyperbolic systems with singularities (billiards, etc.)

    Ressources complémentaires :
    https://www.cirm-math.fr/RepOrga/1947/Notes/Baladi-notes.pdf

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 11/06/2019
      Date de captation : 16/05/2019
      Sous collection : Research School
      arXiv category : Dynamical Systems ; Spectral Theory ; Mathematical Physics
      Domaine : Dynamical Systems & ODE ; Analysis and its Applications
      Format : MP4 (.mp4) - HD
      Durée : 00:55:32
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2019-05-16_Baladi_part1.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Dynamique au-delà de l'hyperbolicité uniforme / Dynamics Beyond Uniform Hyperbolicity
    Organisateurs de la rencontre : Bonatti, Christian ; Buzzi, Jérôme ; Crovisier, Sylvain ; Gan, Shaobo ; Pacifico, Maria José
    Dates : 13/05/2019 - 24/05/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/1947.html

    Données de citation

    DOI : 10.24350/CIRM.V.19523703
    Citer cette vidéo: Baladi, Viviane (2019). Transfer operators for Sinai billiards - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19523703
    URI : http://dx.doi.org/10.24350/CIRM.V.19523703

    Voir aussi

    Bibliographie

    • BALADI, Viviane et DEMERS, Mark. On the Measure of Maximal Entropy for Finite Horizon Sinai Billiard Maps. arXiv preprint arXiv:1807.02330, 2018. - https://arxiv.org/abs/1807.02330

    • BALADI, Viviane, DEMERS, Mark F., et LIVERANI, Carlangelo. Exponential decay of correlations for finite horizon Sinai billiard flows. Inventiones mathematicae, 2018, vol. 211, no 1, p. 39-177. - https://doi.org/10.1007/s00222-017-0745-1

    • BOWEN, Rufus. Topological entropy for noncompact sets. Transactions of the American Mathematical Society, 1973, vol. 184, p. 125-136. - https://doi.org/10.2307/1996403

    • BOWEN, Rufus. Maximizing entropy for a hyperbolic flow. Theory of Computing Systems, 1973, vol. 7, no 3, p. 300-303. - https://doi.org/10.1007/BF01795948

    • BRIN, Michael et KATOK, Anatole. On local entropy. In : Geometric dynamics. Springer, Berlin, Heidelberg, 1983. p. 30-38. - https://doi.org/10.1007/BFb0061408

    • BUNIMOVICH, Leonid Abramovich, SINAI, Yakov G., et CHERNOV, Nikolai Ivanovich. Markov partitions for two-dimensional hyperbolic billiards. Russian Mathematical Surveys, 1990, vol. 45, no 3, p. 105. - https://doi.org/10.1070/RM1990v045n03ABEH002355

    • CHERNOV, Nikolai Ivanovich. Topological entropy and periodic points of two-dimensional hyperbolic billiards. Functional Analysis and Its Applications, 1991, vol. 25, no 1, p. 39-45. - https://doi.org/10.1007/BF01090675

    • CHERNOV, N. I. et MARKARIAN, R. Mathematical Surveys and Monographs. Chaotic Billiards, 2006, vol. 127. -

    • DEMERS, Mark F., WRIGHT, Paul, et YOUNG, Lai-Sang. Entropy, Lyapunov exponents and escape rates in open systems. Ergodic Theory and Dynamical Systems, 2012, vol. 32, no 4, p. 1270-1301. - https://doi.org/10.1017/S0143385711000344

    • DEMERS, Mark et ZHANG, Hong-Kun. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, vol. 5, no 4. - https://doi.org/10.3934/jmd.2011.5.665

    • GOUËZEL, Sébastien, LIVERANI, Carlangelo, et al. Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. Journal of Differential Geometry, 2008, vol. 79, no 3, p. 433-477. - https://arxiv.org/abs/math/0606722

    • LIMA, Yuri et MATHEUS, Carlos. Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities. arXiv preprint arXiv:1606.05863, 2016. - https://arxiv.org/abs/1606.05863

    • PESIN, Yakov B. Dimension theory in dynamical systems: contemporary views and applications. University of Chicago Press, 2008. -

    • PESIN, Ya B. et PITSKEL', B. S. Topological pressure and the variational principle for noncompact sets. Functional Analysis and its Applications, 1984, vol. 18, no 4, p. 307-318. - https://doi.org/10.1007/BF01083692

    • SINAI, Yakov G. Dynamical systems with elastic reflections. Russian Mathematical Surveys, 1970, vol. 25, no 2, p. 137. - https://doi.org/10.1070/RM1970v025n02ABEH003794

    • YOUNG, Lai-Sang. Statistical properties of dynamical systems with some hyperbolicity. Annals of Mathematics, 1998, vol. 147, p. 585-650. - https://doi.org/102307/120960



    Sélection Signaler une erreur
    Close