En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

High dimensional mean estimation - Lecture 2

Sélection Signaler une erreur
Multi angle
Auteurs : Lugosi, Gábor (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Networks are often naturally modeled by random processes in which nodes and edges of the network are added one-by-one, according to some simple stochastic dynamics. Uniform and preferential attachment processes are prime examples of such dynamically growing networks. The statistical problems we address in this talk regard discovering the past of the network when a present-day snapshot is observed. Such problems are sometimes termed 'network archeology'. We present a few results that show that, even in gigantic networks, a lot of information is preserved from the very early days. As the field is still in its infancy, many interesting questions remain to be explored.

Mots-Clés : network archeology; random trees; preferential attachment; broadcasting problem

Codes MSC :

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 14/01/2022
    Date de Captation : 16/12/2021
    Sous Collection : Research School
    Catégorie arXiv : Statistics ; Probability ; Computer Science
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:53:47
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-12-15_Lugosi_Part2.mp4

Informations sur la Rencontre

Nom de la Rencontre : Meeting in Mathematical Statistics - Machine learning and nonparametric statistics / Rencontres de statistique mathématique
Organisateurs de la Rencontre : Butucea, Cristina ; Minsker, Stanislav ; Pouet, Christophe ; Spokoiny, Vladimir
Dates : 13/12/2021 - 17/12/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2581.html

Données de citation

DOI : 10.24350/CIRM.V.19867803
Citer cette vidéo: Lugosi, Gábor (2021). High dimensional mean estimation - Lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19867803
URI : http://dx.doi.org/10.24350/CIRM.V.19867803

Voir Aussi

Bibliographie

  • DEVROYE, Luc, LERASLE, Matthieu, LUGOSI, Gabor, et al. Sub-Gaussian mean estimators. The Annals of Statistics, 2016, vol. 44, no 6, p. 2695-2725. - https://doi.org/10.1214/16-AOS1440

  • LUGOSI, Gábor et MENDELSON, Shahar. Sub-Gaussian estimators of the mean of a random vector. The annals of statistics, 2019, vol. 47, no 2, p. 783-794. - https://doi.org/10.1214/17-AOS1639

  • LUGOSI, Gabor et MENDELSON, Shahar. Robust multivariate mean estimation: the optimality of trimmed mean. The Annals of Statistics, 2021, vol. 49, no 1, p. 393-410. - https://doi.org/10.1214/20-AOS1961

  • LUGOSI, Gabor et MENDELSON, Shahar. Multivariate mean estimation with direction-dependent accuracy. arXiv preprint arXiv:2010.11921, 2020. - https://arxiv.org/abs/2010.11921

  • LUGOSI, Gábor et MENDELSON, Shahar. Mean estimation and regression under heavy-tailed distributions: A survey. Foundations of Computational Mathematics, 2019, vol. 19, no 5, p. 1145-1190. - https://doi.org/10.1007/s10208-019-09427-x



Imagette Video

Sélection Signaler une erreur