En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stable models for modular curves in prime level

Bookmarks Report an error
Post-edited
Authors : Parent, Pierre (Author of the conference)
CIRM (Publisher )

Loading the player...
$X_0(p)$ $X_s^+(p)$ and $X_{ns}^+(p)$ Katz-Mazur model for $X(p)$ Edixhoven semi-stable model for $X(p)$ semi-stable $X_{ns}(p)$ the level 13 case

Abstract : We describe stable models for modular curves associated with all maximal subgroups in prime level, including in particular the new case of non-split Cartan curves.
Joint work with Bas Edixhoven.

MSC Codes :
11G05 - Elliptic curves over global fields
11G18 - Arithmetic aspects of modular and Shimura varieties
14G35 - Modular and Shimura varieties
14Q05 - Computational aspects of algebraic curves

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 30/05/2018
    Conference Date : 24/05/2018
    Subseries : Research talks
    arXiv category : Number Theory ; Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:59:19
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-05-24_Parent.mp4

Information on the Event

Event Title : Diophantine geometry / ​Géométrie diophantienne
Event Organizers : Bosser, Vincent ; Carrizosa, Maria ; Gaudron, Eric ; Habegger, Philipp
Dates : 21/05/2018 - 25/05/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1754.html

Citation Data

DOI : 10.24350/CIRM.V.19408503
Cite this video as: Parent, Pierre (2018). Stable models for modular curves in prime level. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19408503
URI : http://dx.doi.org/10.24350/CIRM.V.19408503

See Also

Bibliography



Bookmarks Report an error