En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Exponential stability of BV solutions in a model of granular flow

Bookmarks Report an error
Multi angle
Authors : Caravenna, Laura (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We are concerned with the well-posedness of a model of granular flow that consists of a hyperbolic system of two balance laws in one-space dimension, which is linearly degenerate along two straight lines in the phase plane and genuinely nonlinear in the subdomains confined by such lines. After introducing the problem, I discuss recent results on the Lipschitz L1-continuous dependence of the entropy weak solutions on the initial data, with a Lipschitz constant that grows exponentially in time. Our analysis relies on the extension of a Lyapunov like functional and provides the first construction of a Lipschitz semigroup of entropy weak solutions to the regime of hyperbolic systems of balance laws (i) with characteristic families that are neither genuinely nonlinear nor linearly degenerate and (ii) initial data of arbitrarily large total variation.

Keywords : balance laws; global large BV; granular flow; $L^{1}$-stability; weakly linearly; degenerate system

MSC Codes :
35L45 - Initial value problems for hyperbolic systems of first-order PDE
35L65 - Conservation laws

Additional resources :
https://www.cirm-math.fr/RepOrga/2083/Slides/marsiglia_granular_flow_2019.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 04/11/2019
    Conference Date : 17/10/2019
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : Analysis and its Applications ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:49
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-10-17_Caravenna.mp4

Information on the Event

Event Title : PDE/Probability Interactions: Particle Systems, Hyperbolic Conservation Laws / Interactions EDP/Probabilités : systèmes de particules, lois de conservation hyperboliques
Event Organizers : Caputo, Pietro ; Fathi, Max ; Guillin, Arnaud ; Reygner, Julien
Dates : 14/10/2019 - 18/10/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2083.html

Citation Data

DOI : 10.24350/CIRM.V.19569903
Cite this video as: Caravenna, Laura (2019). Exponential stability of BV solutions in a model of granular flow. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19569903
URI : http://dx.doi.org/10.24350/CIRM.V.19569903

See Also

Bibliography



Bookmarks Report an error