En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Summation theory of difference rings and applications - lecture 1

Bookmarks Report an error
Multi angle
Authors : Schneider, Carsten (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.

Keywords : symbolic summation; telescoping; parameterized telescoping; recurrence solving; difference rings; difference fields

MSC Codes :
68W30 - Symbolic computation and algebraic computation
33F10
    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 00/00/0000
    Conference Date : 24/02/2025
    Subseries : Research School
    arXiv category : Symbolic Computation
    Mathematical Area(s) : Algebra ; Combinatorics ; Number Theory ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 01:03:31
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-02-24_Schneider_1.mp4

Information on the Event

Event Title : Enumerative combinatorics and effective aspects of differential equations Thematic Month Week 5 / Combinatoire énumérative et aspects effectifs des équations différentielles Mois thématique semaine 5
Event Organizers : Dousse, Jehanne ; Melczer, Stephen ; Mezzarobba, Marc ; Rond, Guillaume
Dates : 24/02/2025 - 28/02/2025
Event Year : 2025
Event URL : https://conferences.cirm-math.fr/3271.html

Citation Data

DOI : 10.24350/CIRM.V.20315603
Cite this video as: Schneider, Carsten (2025). Summation theory of difference rings and applications - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20315603
URI : http://dx.doi.org/10.24350/CIRM.V.20315603

See Also

Bibliography

  • SCHNEIDER, Carsten. Symbolic summation assists combinatorics. Sém. Lothar. Combin, 2007, vol. 56, no 1-36, p. B56b. - http://eudml.org/doc/224549

  • SCHNEIDER, Carsten. Simplifying multiple sums in difference fields. Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, 2013, p. 325-360. - https://doi.org/10.1007/978-3-7091-1616-6_14

  • SCHNEIDER, Carsten. Term algebras, canonical representations and difference ring theory for symbolic summation. Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, p. 423-485. - https://doi.org/10.1007/978-3-030-80219-6_17



Imagette Video

Bookmarks Report an error