En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Homogenization of Stokes-Brinkman type models and mean field limit - lecture 2

Sélection Signaler une erreur
Multi angle
Auteurs : Mecherbet, Amina (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Suspensions are ubiquitous in nature (sediments, clouds,biological fluids ... etc.) and in industry such as civil engineering (paints, polymers ... etc.) among many others. The rigorous derivation of fluid-kinetic models for suspensions has attracted a lot of attention in the last decade. This lecture aims at presenting a review of the main results that have been obtained.

The first session aims at introducing both the microscopic and the limiting equation and giving a formal derivation of the former one. The second session aims at presenting the main early results concerning the derivation of an effective model starting from the microscopic model in which particle positions and velocities are fixed or given. Such a system takes the following form for example
\begin{equation}\label{eq:Stokes}
\left \{
\begin{array}{rcl}
-\Delta u+\nabla p &=& f, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
\text{div } u&=& 0, \text{ on } \Omega\setminus \overline{\underset{i=1}{\overset{N}{\bigcup}} B(x_i,r)} \\
u&=& V_i, \text{ on } \partial B(x_i,r)\\
u&=& 0, \text{ on } \partial \Omega
\end{array}
\right.
\end{equation}
where $\Omega$ a smooth open set of $\mathbb{R}^3$, $x_1, x_2, \cdots, x_N$ are the particles position, $r$ their radius and $V_i$ the given velocity of the $i$th particle. The aim is then to perform an asymptotic analysis when the number of particles $N$ becomes large while their radius $r$ becomes small, first results have been obtained in [1,2,3] where the limit equations depend on the scale of the holes and their typical distance; Stokes equation, Darcy equation or Stokes-Brinkman equation. After recalling the recent contributions, we will present a short argument giving insights about the derivation of the Brinkman term in a simple case.

The last session of this mini-course aims at presenting the results regarding the rigorous derivation of fluid-kinetic models when taking into account the fluid-particle interactions and particle dynamics. This means that we consider the Stokes equation [1] coupled to Newton laws where we neglect particles inertia (balance of force and torque) and the motion of the center of the particles $\dot{x}_i=V_i$.

The rigorous derivation of a fluid-kinetic model in this setting have been obtained in [6,5,7] in the case $\Omega=\mathbb{R}^3$ under some separation assumptions on the particles. The obtained equation is a Transport-Stokes equation
\begin{equation}\label{eq:TS}\tag{TS}
\left\{
\begin{array}{rcl}
- \Delta u + \nabla p &=& \rho g,\\
\text{div } u&=& 0, \\
\partial_t \rho +\text{div }( ( u + \gamma^{-1} V_{\mathrm{St}})\rho) &=& 0,
\end{array}
\right.
\end{equation}
where $\gamma = \lim Nr \in (0,\infty]$.

This result is related to the mean field limit of many particles interacting through a kernel and has been extensively studied for several different problems. We present the main ideas for such a derivation using the method of reflections and stability estimates through Wasserstein distance following the approach by M. Hauray [4]. We finish by emphasizing new results based on a mean-field argument for the derivation of models of suspensions.

Keywords : suspensions; homogenization; many particle interacting systems; mean-field

Codes MSC :
76D07 - Stokes and related (Oseen, etc.) flows
76T20 - Suspensions
35Q83 - Vlasov-like equations
35Q70 - PDEs in connection with mechanics of particles and systems

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 04/04/2025
    Date de captation : 25/03/2025
    Sous collection : Research School
    arXiv category : Analysis of PDEs
    Domaine : Dynamical Systems & ODE ; PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Durée : 01:38:33
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-03-25_Mecherbet_Part2.mp4

Informations sur la Rencontre

Nom de la rencontre : SMF RC. Kinetic theory and fluid mechanics: couplings, scalings and asymptotics. / ER SMF. Théorie cinétique et mécanique des fluides : couplages, échelles et asymptotiques.
Organisateurs de la rencontre : Han-Kwan, Daniel ; Lods, Bertrand ; Moussa, Ayman ; Tristani, Isabelle
Dates : 24/03/2025 - 28/03/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3205.html

Données de citation

DOI : 10.24350/CIRM.V.20332003
Citer cette vidéo: Mecherbet, Amina (2025). Homogenization of Stokes-Brinkman type models and mean field limit - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20332003
URI : http://dx.doi.org/10.24350/CIRM.V.20332003

Voir aussi

Bibliographie

  • [1] - ALLAIRE, Grégoire. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes. Archive for Rational Mechanics and Analysis, 1991, vol. 113, p. 209-259. - https://doi.org/10.1007/BF00375065

  • [2] - ALLAIRE, Grégoire. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes. Archive for rational mechanics and analysis, 1991, vol. 113, p. 261-298. - https://doi.org/10.1007/BF00375066

  • HÖFER, Richard M. Sedimentation of inertialess particles in Stokes flows. Communications in Mathematical Physics, 2018, vol. 360, p. 55-101. - https://doi.org/10.1007/s00220-018-3131-y

  • [3] - DESVILLETTES, Laurent, GOLSE, François, et RICCI, Valeria. The mean-field limit for solid particles in a Navier-Stokes flow. Journal of Statistical Physics, 2008, vol. 131, p. 941-967. - https://doi.org/10.1007/s10955-008-9521-3

  • [4] - HAURAY, Maxime. Wasserstein distances for vortices approximation of Euler-type equations. Mathematical Models and Methods in Applied Sciences, 2009, vol. 19, no 08, p. 1357-1384. - https://doi.org/10.1142/S0218202509003814

  • [5] - HÖFER, Richard M. Sedimentation of inertialess particles in Stokes flows. Communications in Mathematical Physics, 2018, vol. 360, p. 55-101. - https://doi.org/10.1007/s00220-018-3131-y

  • [6] - JABIN, Pierre-Emmanuel et OTTO, Felix. Identification of the dilute regime in particle sedimentation. Communications in mathematical physics, 2004, vol. 250, p. 415-432. - https://doi.org/10.1007/s00220-004-1126-3

  • [7] - MECHERBET Amina. Sedimentation of particles in Stokes flow. Kinetic and Related Models, 2019, 12(5), p. 995-1044. - https://doi.org/10.3934/krm.2019038



Imagette Video

Sélection Signaler une erreur