En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Frieze patterns and Farey complexes

Bookmarks Report an error
Multi angle
Authors : Short, Ian (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This short course is about modelling SL2-tilings and Coxeter frieze patterns with Farey complexes. The first talk concerns tame frieze patterns over the integers. We introduce the Farey tessellation of the hyperbolic plane, drawing inspiration from the theory of dessins d'enfants. The geometric and numeric properties of the Farey tessellation shed light on known results on classifying frieze patterns and they provide a framework for new results. This approach originated in work of Morier-Genoud, Ovsienko, and Tabachnikov; we will discuss their ideas and generalisations. There will be diagrams aplenty, several exercises, and a few open questions.

Keywords : frieze; Farey complex; SL2-tiling

MSC Codes :
05E16 - Combinatorial aspects of groups and algebras
11B57 - "Farey sequences; the sequences ${1^k, 2^k, ... }$"
51F15 - "Reflection groups, reflection geometries, See also {20H10, 20H15; for Coxeter groups, See 20F55}"

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 04/06/2025
    Conference Date : 12/05/2025
    Subseries : Research School
    arXiv category : Combinatorics ; Number Theory
    Mathematical Area(s) : Combinatorics ; Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 01:05:14
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-05-12_short.mp4

Information on the Event

Event Title : Frieze patterns in algebra, combinatorics and geometry / Frises en algèbre, combinatoire et géométrie
Event Organizers : Baur, Karin ; Cuntz, Michael ; Faber, Eleonore ; Plamondon, Pierre-Guy
Dates : 12/05/2025 - 16/05/2025
Event Year : 2025
Event URL : https://conferences.cirm-math.fr/3214.html

Citation Data

DOI : 10.24350/CIRM.V.20346603
Cite this video as: Short, Ian (2025). Frieze patterns and Farey complexes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20346603
URI : http://dx.doi.org/10.24350/CIRM.V.20346603

See Also

Bibliography



Imagette Video

Bookmarks Report an error