Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss recent joint work with Sarah Zerbes in which we use Euler systems and reciprocity laws for GSp(4) to study the analytic rank 0 case of the Birch--Swinnerton-Dyer conjecture for abelian surfaces. Via restriction of scalars, this also includes the BSD conjecture for analytic rank 0 elliptic curves over imaginary quadratic fields. Our main result is a conditional proof of the conjecture subject to an assumption about the local geometry of the GSp4 eigenvariety at non-regular-weight points. I will explain how this conjecture arises and some motivation for why it seems plausible that it should hold.
[-]
I will discuss recent joint work with Sarah Zerbes in which we use Euler systems and reciprocity laws for GSp(4) to study the analytic rank 0 case of the Birch--Swinnerton-Dyer conjecture for abelian surfaces. Via restriction of scalars, this also includes the BSD conjecture for analytic rank 0 elliptic curves over imaginary quadratic fields. Our main result is a conditional proof of the conjecture subject to an assumption about the local ...
[+]
11F46 ; 11G10 ; 14K15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel's degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk we explore how the theory of automorphic forms, together with the theory of quadratic forms, helps us understand these representation numbers. We reveal arithmetic relations between ”average” representation numbers (where we average over a genus), and finally we give an explicit formula for these average representation numbers in terms of the Fourier coefficients of Siegel Eisenstein series. In the case that $n = 1$ (meaning we are looking at how often $L$ represents an integer) this yields explicit numerical formulas for these average representation numbers.
[-]
Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel's degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk ...
[+]
11F27 ; 11F30 ; 11F46