En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11M06 7 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Angles of Gaussian primes - Rudnick, Zeév (Author of the conference) | CIRM H

Multi angle

Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a random matrix model and by function field considerations.[-]
Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a ...[+]

11M26 ; 11M06 ; 11F66 ; 11T55 ; 11R44 ; 11M50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Large character sums - Lamzouri, Youness (Author of the conference) | CIRM H

Multi angle

For a non-principal Dirichlet character $\chi$ modulo $q$, the classical Pólya-Vinogradov inequality asserts that
$M (\chi) := \underset{x}{max}$$| \sum_{n \leq x}$$\chi(n)| = O (\sqrt{q} log$ $q)$.
This was improved to $\sqrt{q} log$ $log$ $q$ by Montgomery and Vaughan, assuming the Generalized Riemann hypothesis GRH. For quadratic characters, this is known to be optimal, owing to an unconditional omega result due to Paley. In this talk, we shall present recent results on higher order character sums. In the first part, we discuss even order characters, in which case we obtain optimal omega results for $M(\chi)$, extending and refining Paley's construction. The second part, joint with Alexander Mangerel, will be devoted to the more interesting case of odd order characters, where we build on previous works of Granville and Soundararajan and of Goldmakher to provide further improvements of the Pólya-Vinogradov and Montgomery-Vaughan bounds in this case. In particular, assuming GRH, we are able to determine the order of magnitude of the maximum of $M(\chi)$, when $\chi$ has odd order $g \geq 3$ and conductor $q$, up to a power of $log_4 q$ (where $log_4$ is the fourth iterated logarithm).[-]
For a non-principal Dirichlet character $\chi$ modulo $q$, the classical Pólya-Vinogradov inequality asserts that
$M (\chi) := \underset{x}{max}$$| \sum_{n \leq x}$$\chi(n)| = O (\sqrt{q} log$ $q)$.
This was improved to $\sqrt{q} log$ $log$ $q$ by Montgomery and Vaughan, assuming the Generalized Riemann hypothesis GRH. For quadratic characters, this is known to be optimal, owing to an unconditional omega result due to Paley. In this talk, we ...[+]

11L40 ; 11N37 ; 11N13 ; 11M06

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zeros, moments and determinants - Snaith, Nina (Author of the conference) | CIRM H

Multi angle

For 20 years we have known that average values of characteristic polynomials of random unitary matrices provide a good model for moments of the Riemann zeta function. Now we consider mixed moments of characteristic polynomials and their derivatives, calculations which are motivated by questions on the distribution of zeros of the derivative of the Riemann zeta function.

15B52 ; 11M26 ; 11M06

Bookmarks Report an error