En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14J35 5 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Special rational fibrations in Fano 4-folds - Casagrande, Cinzia (Author of the conference) | CIRM H

Multi angle

Smooth, complex Fano 4-folds are not classified, and we still lack a good understanding of their general properties. We focus on Fano 4-folds with large second Betti number $b_{2}$, studied via birational geometry and the detailed analysis of their contractions and rational contractions (we recall that a contraction is a morphism with connected fibers onto a normal projective variety, and a rational contraction is given by a sequence of flips followed by a contraction). The main result that we want to present is the following: let $X$ be a Fano 4-fold having a nonconstant rational contraction $X --> Y$ of fiber type. Then either $b_{2}(X)$ is at most 18, with equality only for a product of surfaces, or $Y$ is $\mathbb{P}^{1}$ or $\mathbb{P}^{2}$. The proof is achieved by reducing to the case of "special" rational contractions of fiber type. We will explain this notion and give an idea of the techniques that are used.[-]
Smooth, complex Fano 4-folds are not classified, and we still lack a good understanding of their general properties. We focus on Fano 4-folds with large second Betti number $b_{2}$, studied via birational geometry and the detailed analysis of their contractions and rational contractions (we recall that a contraction is a morphism with connected fibers onto a normal projective variety, and a rational contraction is given by a sequence of flips ...[+]

14J45 ; 14J35 ; 14E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gushel-Mukai varieties and their periods - Debarre, Olivier (Author of the conference) | CIRM H

Multi angle

Gushel-Mukai varieties are defined as the intersection of the Grassmannian Gr(2, 5) in its Plücker embedding, with a quadric and a linear space. They occur in dimension 6 (with a slighty modified construction), 5, 4, 3, 2 (where they are just K3 surfaces of degree 10), and 1 (where they are just genus 6 curves). Their theory parallels that of another important class of Fano varieties, cubic fourfolds, with many common features such as the presence of a canonically attached hyperkähler fourfold: the variety of lines for a cubic is replaced here with a double EPW sextic.
There is a big difference though: in dimension at least 3, GM varieties attached to a given EPW sextic form a family of positive dimension. However, we prove that the Hodge structure of any of these GM varieties can be reconstructed from that of the EPW sextic or of an associated surface of general type, depending on the parity of the dimension (for cubic fourfolds, the corresponding statement was proved in 1985 by Beauville and Donagi). This is joint work with Alexander Kuznetsov.[-]
Gushel-Mukai varieties are defined as the intersection of the Grassmannian Gr(2, 5) in its Plücker embedding, with a quadric and a linear space. They occur in dimension 6 (with a slighty modified construction), 5, 4, 3, 2 (where they are just K3 surfaces of degree 10), and 1 (where they are just genus 6 curves). Their theory parallels that of another important class of Fano varieties, cubic fourfolds, with many common features such as the ...[+]

14J35 ; 14J40 ; 14J45 ; 14M15 ; 14D07 ; 32G20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).[-]
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...[+]

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).[-]
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...[+]

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).[-]
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...[+]

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Bookmarks Report an error