En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20C33 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quasisemisimple classes - Michel, Jean (Author of the conference) | CIRM H

Multi angle

This is a report on joint work with François Digne. Quasisemisimple elements are a generalisation of semisimple elements to disconnected reductive groups (or equivalently, to algebraic automorphisms of reductive groups). In the setting of reductive groups over an algebraically closed field, we discuss the classification of quasisemisimple classes, including isolated and quasi-isolated ones. The talk will start with the basic theory of non-connected reductive groups.[-]
This is a report on joint work with François Digne. Quasisemisimple elements are a generalisation of semisimple elements to disconnected reductive groups (or equivalently, to algebraic automorphisms of reductive groups). In the setting of reductive groups over an algebraically closed field, we discuss the classification of quasisemisimple classes, including isolated and quasi-isolated ones. The talk will start with the basic theory of n...[+]

20G15 ; 20G40 ; 20C33 ; 20G05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present here a bunch of questions (but almost no answers...) about partial resolutions/deformations of varieties of the form $(V × V^∗)/W$, where $W$ is a complex reflection groups, which are inspired by analogies with the representation theory of finite reductive groups.
Joint work with Raphaël Rouquier.

14L30 ; 20C33 ; 20G05 ; 20G40

Bookmarks Report an error