En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20G40 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present here a bunch of questions (but almost no answers...) about partial resolutions/deformations of varieties of the form $(V × V^∗)/W$, where $W$ is a complex reflection groups, which are inspired by analogies with the representation theory of finite reductive groups.
Joint work with Raphaël Rouquier.

14L30 ; 20C33 ; 20G05 ; 20G40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quasisemisimple classes - Michel, Jean (Author of the conference) | CIRM H

Multi angle

This is a report on joint work with François Digne. Quasisemisimple elements are a generalisation of semisimple elements to disconnected reductive groups (or equivalently, to algebraic automorphisms of reductive groups). In the setting of reductive groups over an algebraically closed field, we discuss the classification of quasisemisimple classes, including isolated and quasi-isolated ones. The talk will start with the basic theory of non-connected reductive groups.[-]
This is a report on joint work with François Digne. Quasisemisimple elements are a generalisation of semisimple elements to disconnected reductive groups (or equivalently, to algebraic automorphisms of reductive groups). In the setting of reductive groups over an algebraically closed field, we discuss the classification of quasisemisimple classes, including isolated and quasi-isolated ones. The talk will start with the basic theory of n...[+]

20G15 ; 20G40 ; 20C33 ; 20G05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zaremba's conjecture and growth in groups - Shkredov, Ilya (Author of the conference) | CIRM H

Virtualconference

Zaremba's conjecture belongs to the area of continued fractions. It predicts that for any given positive integer q there is a positive a, a < q, (a,q)=1 such that all partial quotients b_j in its continued fractions expansion a/q = 1/b_1+1/b_2 +... + 1/b_s are bounded by five. At the moment the question is widely open although the area has a rich history of works by Korobov, Hensley, Niederreiter, Bourgain and many others. We survey certain results concerning this hypothesis and show how growth in groups helps to solve different relaxations of Zaremba's conjecture. In particular, we show that a deeper hypothesis of Hensley concerning some Cantor-type set with the Hausdorff dimension >1/2 takes place for the so-called modular form of Zaremba's conjecture.[-]
Zaremba's conjecture belongs to the area of continued fractions. It predicts that for any given positive integer q there is a positive a, a 1/2 takes place for the so-called modular form of Zaremba's conjecture....[+]

11A55 ; 11J70 ; 11B30 ; 20G05 ; 20G40

Bookmarks Report an error