En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32S50 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry. [-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...[+]

32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry. [-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...[+]

32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry. [-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...[+]

32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry. [-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...[+]

32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21

Bookmarks Report an error