En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 16E35 5 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reid's recipe is an equivalent of the McKay correspondence in dimension three. It marks interior line segments and lattice points in the fan of the G-Hilbert scheme (a specific crepant resolution of $\mathbb{C}^{3} / G$ for $G \subset S L(3, \mathbb{C})$ ) with characters of irreducible representations of $G$. Our goal is to generalise this by marking the toric fan of a crepant resolution of any affine Gorenstein singularity, in a way that is compatible with both the G-Hilbert case and its categorical counterpart known as Derived Reid's Recipe. To achieve this, we foray into the combinatorial land of quiver moduli spaces and dimer models. This is joint work with Alastair Craw and Jesus Tapia Amador.[-]
Reid's recipe is an equivalent of the McKay correspondence in dimension three. It marks interior line segments and lattice points in the fan of the G-Hilbert scheme (a specific crepant resolution of $\mathbb{C}^{3} / G$ for $G \subset S L(3, \mathbb{C})$ ) with characters of irreducible representations of $G$. Our goal is to generalise this by marking the toric fan of a crepant resolution of any affine Gorenstein singularity, in a way that is ...[+]

14E16 ; 14M25 ; 16E35 ; 16G20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Cluster algebras and categorification - Lecture 1 - Amiot, Claire (Author of the conference) | CIRM H

Post-edited

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and categorification - Lecture 2 - Amiot, Claire (Author of the conference) | CIRM H

Multi angle

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and categorification - Lecture 3 - Amiot, Claire (Author of the conference) | CIRM H

Multi angle

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$T$-structures from categorical actions - Koppensteiner, Clemens (Author of the conference) | CIRM H

Multi angle

$T$-structures on derived categories of coherent sheaves are an important tool to encode both representation-theoretic and geometric information. Unfortunately there are only a limited amount of tools available for the constructions of such $t$-structures. We show how certain geometric/categorical quantum affine algebra actions naturally induce $t$-structures on the categories underlying the action. In particular we recover the categories of exotic sheaves of Bezrukavnikov and Mirkovic.
This is joint work with Sabin Cautis.[-]
$T$-structures on derived categories of coherent sheaves are an important tool to encode both representation-theoretic and geometric information. Unfortunately there are only a limited amount of tools available for the constructions of such $t$-structures. We show how certain geometric/categorical quantum affine algebra actions naturally induce $t$-structures on the categories underlying the action. In particular we recover the categories of ...[+]

14F05 ; 16E35

Bookmarks Report an error