En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11Z05 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

11M06 ; 15B52 ; 11Z05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Isogeny-based cryptography on the (abelian) surface - Ti, Yan Bo (Auteur de la conférence) | CIRM H

Multi angle

It is an understatement to say that isogeny-based cryptography has been on a journey of ups and downs. Through the course of this journey, various techniques have been used to analyse isogeny-based cryptosystems. One of which, is using genus two methods to examine and build isogeny-based cryptosystems, and ultimately break one of the most promising key exchange schemes, SIDH. In this talk, we will look at cameos and appearances of genus two in isogeny-based cryptography. We will survey the landscape and see how genus two can be used constructively and sometimes destructively on isogeny-based cryptography.[-]
It is an understatement to say that isogeny-based cryptography has been on a journey of ups and downs. Through the course of this journey, various techniques have been used to analyse isogeny-based cryptosystems. One of which, is using genus two methods to examine and build isogeny-based cryptosystems, and ultimately break one of the most promising key exchange schemes, SIDH. In this talk, we will look at cameos and appearances of genus two in ...[+]

11Z05 ; 14G50 ; 94A60

Sélection Signaler une erreur