En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14M07 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A Grassmannian technique and the Kobayashi Conjecture - Riedl, Eric (Auteur de la conférence) | CIRM H

Multi angle

An entire curve on a complex variety is a holomorphic map from the complex numbers to the variety. We discuss two well-known conjectures on entire curves on very general high-degree hypersurfaces $X$ in $\mathbb{P}^n$: the Green–Griffiths–Lang Conjecture, which says that the entire curves lie in a proper subvariety of $X$, and the Kobayashi Conjecture, which says that X contains no entire curves.
We prove that (a slightly strengthened version of) the Green–Griffiths–Lang Conjecture in dimension $2n$ implies the Kobayashi Conjecture in dimension $n$. The technique has already led to improved bounds for the Kobayashi Conjecture. This is joint work with David Yang.[-]
An entire curve on a complex variety is a holomorphic map from the complex numbers to the variety. We discuss two well-known conjectures on entire curves on very general high-degree hypersurfaces $X$ in $\mathbb{P}^n$: the Green–Griffiths–Lang Conjecture, which says that the entire curves lie in a proper subvariety of $X$, and the Kobayashi Conjecture, which says that X contains no entire curves.
We prove that (a slightly strengthened version ...[+]

32Q45 ; 14M10 ; 14J70 ; 14M07

Sélection Signaler une erreur