En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 19F27 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Periods of $1$-motives - Huber-Klawitter, Annette (Auteur de la conférence) | CIRM H

Multi angle

(joint work with G. Wüstholz) Roughly, $1$-dimensional periods are the complex numbers obtained by integrating a differential form on an algebraic curve over $\bar{\mathbf{Q}}$ over a suitable domain of integration. One of the alternative characterisations is as periods of Deligne $1$-motives.
We clear up the linear relations between these numbers, proving Kontsevich's version of the period conjecture for $1$-dimensional periods. In particular, a $1$-dimensional period is shown to be algebraic if and only if it is of the form $\int_\gamma (\phi+df)$ with $\int_\gamma\phi=0$. We also get formulas for the spaces of periods of a given $1$-motive, generalising Baker's theorem on logarithms of algebraic numbers.
The proof is based on a version of Wüstholz's analytic subgroup theorem for $1$-motives.[-]
(joint work with G. Wüstholz) Roughly, $1$-dimensional periods are the complex numbers obtained by integrating a differential form on an algebraic curve over $\bar{\mathbf{Q}}$ over a suitable domain of integration. One of the alternative characterisations is as periods of Deligne $1$-motives.
We clear up the linear relations between these numbers, proving Kontsevich's version of the period conjecture for $1$-dimensional periods. In particular, ...[+]

14F42 ; 19E15 ; 19F27

Sélection Signaler une erreur