En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 42A20 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Carleson's Theorem and Schnorr randomness - Franklin, Johanna (Auteur de la conférence) | CIRM H

Multi angle

Carleson's Theorem states that for $1 < p < \infty$, the Fourier series of a function $f$ in $L^p[-\pi,\pi]$ converges to $f$ almost everywhere. We consider this theorem in the context of computable analysis and show the following two results.
(1) For a computable $p > 1$, if $f$ is a computable vector in $L^p[?\pi,\pi]$ and $t_0 \in [-\pi,\pi]$ is Schnorr random, then the Fourier series for $f$ converges at $t_0$.
(2) If $t_0 \in [-\pi,\pi]$ is not Schnorr random, then there is a computable function $f : [-\pi,\pi] \rightarrow \mathbb{C}$ whose Fourier series diverges at $t_0$.
This is joint work with Timothy H. McNicholl, and Jason Rute.[-]
Carleson's Theorem states that for $1 < p 1$, if $f$ is a computable vector in $L^p[?\pi,\pi]$ and $t_0 \in [-\pi,\pi]$ is Schnorr random, then the Fourier series for $f$ converges at $t_0$.
(2) If $t_0 \in [-\pi,\pi]$ is not Schnorr random, then there is a computable function $f : [-\pi,\pi] \rightarrow \mathbb{C}$ whose Fourier series diverges at $t_0$.
This is joint work with Timothy H. McNicholl, and Jason Rute....[+]

03D32 ; 42A20 ; 03D78 ; 68Q30

Sélection Signaler une erreur