En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46B70 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The story of Kalton's last unpublished paper - Castillo, Jesús M.F. (Auteur de la conférence) | CIRM

Multi angle

I'd like to share with the audience the Kaltonian story behind [1], started in 2004, including the problems we wanted to solve, and could not.
In that paper we show that Rochberg's generalized interpolation spaces $\mathbb{Z}^{(n)}$ [5] can be arranged to form exact sequences $0\to\mathbb{Z}^{(n)}\to\mathbb{Z}^{(n+k)}\to\mathbb{Z}^{(k)} \to 0$. In the particular case of Hilbert spaces obtained from the interpolation scale of $\ell_p$ spaces then $\mathbb{Z}^{(2)}$ becomes the well-known Kalton-Peck $Z_2$ space, and one gets from here that there are quite natural nontrivial twisted sums $0\to Z_2\to\mathbb{Z}^{(4)}\to Z_2 \to0$ of $Z_2$ with itself. The twisted sum space $\mathbb{Z}^{(4)}$ does not embeds in, or is a quotient of, a twisted Hilbert space and does not contain $\ell_2$ complemented. We will also construct another nontrivial twisted sum of $Z_2$ with itself that contains $\ell_2$ complemented. These results have some connection with the nowadays called Kalton calculus [3, 4], and thus several recent advances [2] in this theory that combines twisted sums and interpolation theory will be shown.

Banach space - twisted sum - complex interpolation - Hilbert space[-]
I'd like to share with the audience the Kaltonian story behind [1], started in 2004, including the problems we wanted to solve, and could not.
In that paper we show that Rochberg's generalized interpolation spaces $\mathbb{Z}^{(n)}$ [5] can be arranged to form exact sequences $0\to\mathbb{Z}^{(n)}\to\mathbb{Z}^{(n+k)}\to\mathbb{Z}^{(k)} \to 0$. In the particular case of Hilbert spaces obtained from the interpolation scale of $\ell_p$ spaces then ...[+]

46M18 ; 46B70 ; 46B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we consider the Laplace operator with Dirichlet boundary conditions on a smooth domain. We prove that it has a bounded $H^\infty$-calculus on weighted $L^p$-spaces for power weights which fall outside the classical class of $A_p$-weights. Furthermore, we characterize the domain of the operator and derive several consequences on elliptic and parabolic regularity. In particular, we obtain a new maximal regularity result for the heat equation with very rough inhomogeneous boundary data.
The talk is based on joint work with Nick Lindemulder.[-]
In this talk we consider the Laplace operator with Dirichlet boundary conditions on a smooth domain. We prove that it has a bounded $H^\infty$-calculus on weighted $L^p$-spaces for power weights which fall outside the classical class of $A_p$-weights. Furthermore, we characterize the domain of the operator and derive several consequences on elliptic and parabolic regularity. In particular, we obtain a new maximal regularity result for the heat ...[+]

46E35 ; 42B25 ; 46B70 ; 46E40 ; 47A60

Sélection Signaler une erreur