En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32S22 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Using Szenes formula for multiple Bernoulli series, we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also certain multiple zeta values.
This is joint work with V. Baldoni and M. Vergne.

11B68 ; 11M32 ; 11M41 ; 14D20 ; 17B20 ; 17B22 ; 32S22 ; 53D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A computational approach to Milnor fiber cohomology - Dimca, Alexandru (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we consider the Milnor fiber F associated to a reduced projective plane curve $C$. A computational approach for the determination of the characteristic polynomial of the monodromy action on the first cohomology group of $F$, also known as the Alexander polynomial of the curve $C$, is presented. This leads to an effective algorithm to detect all the roots of the Alexander polynomial and, in many cases, explicit bases for the monodromy eigenspaces in terms of polynomial differential forms. The case of line arrangements, where there are many open questions, will illustrate the complexity of the problem. These results are based on joint work with Morihiko Saito, and with Gabriel Sticlaru.[-]
In this talk we consider the Milnor fiber F associated to a reduced projective plane curve $C$. A computational approach for the determination of the characteristic polynomial of the monodromy action on the first cohomology group of $F$, also known as the Alexander polynomial of the curve $C$, is presented. This leads to an effective algorithm to detect all the roots of the Alexander polynomial and, in many cases, explicit bases for the ...[+]

32S55 ; 32S35 ; 32S22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A monstrous(?) complex hyperbolic orbifold - Basak, Tathagata (Auteur de la Conférence) | CIRM H

Multi angle

I will report on progress with Daniel Allcock on the ”Monstrous Proposal”, namely the conjecture: Complex hyperbolic 13-space, modulo a particular discrete group, and with orbifold structure changed in a simple way, has fundamental group equal to (MxM)(semidirect)2, where M is the Monster finite simple group. Our progress is a proof that this orbifold fundamental group has generators that satisfy defining relations for (MxM)(semidirect) 2. It follows that either the monstrous proposal is true, or else the orbifold fundamental group collapses to Z/2. The generators and relations are extremely natural from the complex hyperbolic perspective, keeping hopes high for the conjecture. [-]
I will report on progress with Daniel Allcock on the ”Monstrous Proposal”, namely the conjecture: Complex hyperbolic 13-space, modulo a particular discrete group, and with orbifold structure changed in a simple way, has fundamental group equal to (MxM)(semidirect)2, where M is the Monster finite simple group. Our progress is a proof that this orbifold fundamental group has generators that satisfy defining relations for (MxM)(semidirect) 2. It ...[+]

57M05 ; 20F36 ; 52C35 ; 32S22

Sélection Signaler une erreur