En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 49Q10 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We introduce a new function which measures the torsional instability of a partially hinged rectangular plate. By exploiting it, we compare the torsional performances of different plates reinforced with stiffening trusses. This naturally leads to a shape optimization problem which can be set up through a minimaxmax procedure.

35Q74 ; 49Q10 ; 74K20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we deal with the regularity of optimal sets for a shape optimization problem involving a combination
of eigenvalues, under a fixed volume constraints. As a model problem, consider
\[
\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset\mathbb{R}^d,\ \text{open}\ ,\ |\Omega|=1\Big\},
\]
where $\langle_i(\cdot)$ denotes the eigenvalues of the Dirichlet Laplacian and $|\cdot|$ the $d$-dimensional Lebesgue measure.
We prove that any minimizer $_{opt}$ has a regular part of the topological boundary which is relatively open and
$C^{\infty}$ and that the singular part has Hausdorff dimension smaller than $d-d^*$, where $d^*\geq 5$ is the minimal
dimension allowing the existence of minimal conic solutions to the blow-up problem.

We mainly use techniques from the theory of free boundary problems, which have to be properly extended to the case of
vector-valued functions: nondegeneracy property, Weiss-like monotonicity formulas with area term; finally through the
properties of non tangentially accessible domains we shall be in a position to exploit the ''viscosity'' approach recently proposed by De Silva.

This is a joint work with Dario Mazzoleni and Bozhidar Velichkov.[-]
In this talk we deal with the regularity of optimal sets for a shape optimization problem involving a combination
of eigenvalues, under a fixed volume constraints. As a model problem, consider
\[
\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset\mathbb{R}^d,\ \text{open}\ ,\ |\Omega|=1\Big\},
\]
where $\langle_i(\cdot)$ denotes the eigenvalues of the Dirichlet Laplacian and $|\cdot|$ the $d$-dimensional Lebesgue m...[+]

49Q10 ; 35R35 ; 47A75 ; 49R05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dirichlet-Neumann shape optimization problems - Buttazzo, Giuseppe (Auteur de la Conférence) | CIRM H

Multi angle

We consider spectral optimization problems of the form

$\min\lbrace\lambda_1(\Omega;D):\Omega\subset D,|\Omega|=1\rbrace$

where $D$ is a given subset of the Euclidean space $\textbf{R}^d$. Here $\lambda_1(\Omega;D)$ is the first eigenvalue of the Laplace operator $-\Delta$ with Dirichlet conditions on $\partial\Omega\cap D$ and Neumann or Robin conditions on $\partial\Omega\cap\partial D$. The equivalent variational formulation

$\lambda_1(\Omega;D)=\min\lbrace\int_\Omega|\nabla u|^2dx+k\int_{\partial D}u^2d\mathcal{H}^{d-1}:$

$u\in H^1(D),u=0$ on $\partial\Omega\cap D,||u||_{L^2(\Omega)}=1\rbrace$

reminds the classical drop problems, where the first eigenvalue replaces the total variation functional. We prove an existence result for general shape cost functionals and we show some qualitative properties of the optimal domains. The case of Dirichlet condition on a $\textit{fixed}$ part and of Neumann condition on the $\textit{free}$ part of the boundary is also considered[-]
We consider spectral optimization problems of the form

$\min\lbrace\lambda_1(\Omega;D):\Omega\subset D,|\Omega|=1\rbrace$

where $D$ is a given subset of the Euclidean space $\textbf{R}^d$. Here $\lambda_1(\Omega;D)$ is the first eigenvalue of the Laplace operator $-\Delta$ with Dirichlet conditions on $\partial\Omega\cap D$ and Neumann or Robin conditions on $\partial\Omega\cap\partial D$. The equivalent variational formulation

$\lam...[+]

49Q10 ; 49J20 ; 49N45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Some new inequalities for the Cheeger constant - Fragalà, Ilaria (Auteur de la Conférence) | CIRM H

Post-edited

We discuss some new results for the Cheeger constant in dimension two, including:
- a polygonal version of Faber-Krahn inequality;
- a reverse isoperimetric inequality for convex bodies;
- a Mahler-type inequality in the axisymmetric setting;
- asymptotic behaviour of optimal partition problems.
Based on some recent joint works with D.Bucur,
and for the last part also with B.Velichkov and G.Verzini.

49Q10 ; 52B60 ; 35P15 ; 52A40 ; 52A10 ; 35A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Upper and lower bounds for some shape functionals - Buttazzo, Giuseppe (Auteur de la Conférence) | CIRM H

Virtualconference

The relations between some quantities related to the Laplace operator are considered. In particular, principal eigenvalue and torsional rigidity are studied in the class of general domains, convex domains, and domains with a small thickness. This allows to obtain a detailed description of the Blasche-Santaló diagram of the two quantities. Several open questions are discussed, in particular when the Laplacian is replaced by the $p$-Laplacian.

49Q10 ; 35J20 ; 35D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the stability of the Bossel-Daners inequality - Trombetti, Cristina (Auteur de la Conférence) | CIRM H

Multi angle

The Bossel-Daners is a Faber-Krahn type inequality for the first Laplacian eigenvalue with Robin boundary conditions. We prove a stability result for such inequality.

49Q10 ; 49K20 ; 35P15 ; 35J05 ; 47J30

Sélection Signaler une erreur