En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 76Q05 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The determination of the shape of an obstacle from its effects on known acoustic waves is an important problem in many technologies such as sonar, geophysical exploration and medical imaging. This inverse obstacle problem (IOP) is difficult to solve, especially from a numerical viewpoint, because of its ill-posed and nonlinear nature. Its investigation requires the understanding of the theory for the associated direct scattering problem, and the mastery of the corresponding numerical solution methods. The main goal of this work is the development of an efficient procedure for retrieving the shape of an elastic obstacle from the knowledge of some scattered far-field patterns, and assuming certain characteristics of the surface of the obstacle. We propose a solution methodology based on a regularized Newton-type method. The solution of the considered IOP by the proposed iterative method incurs, at each iteration, the solution of a linear system whose entries are the Fréchet derivatives of the elasto-acoustic field with respect to the shape parameters. We prove that these derivatives are solutions of the same direct elasto-acoustic scattering problem that differs only in the transmission conditions on the surface of the scatterer. Furthermore, the computational efficiency of the IOP solver depends mainly on the computational efficiency of the solution of the forward problems that arise at each Newton iteration. We propose to solve the direct scattering-type problems using a finite-element method based on discontinuous Galerkin approximations equipped with curved element boundaries. Numerical results will be presented to illustrate the salient features of this computational methodology and highlight its performance characteristics.

acoustics - shape derivative - inverse obstacle problem - Fréchet derivatives - inverse elasto-acoustic scattering problems[-]
The determination of the shape of an obstacle from its effects on known acoustic waves is an important problem in many technologies such as sonar, geophysical exploration and medical imaging. This inverse obstacle problem (IOP) is difficult to solve, especially from a numerical viewpoint, because of its ill-posed and nonlinear nature. Its investigation requires the understanding of the theory for the associated direct scattering problem, and the ...[+]

65N21 ; 76Q05 ; 35R30

Sélection Signaler une erreur