En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Anker, Jean-Philippe 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Interview du CIRM : Charles Torossian - Torossian, Charles (Personne interviewée) | CIRM H

Post-edited

Mathématicien
Inspecteur Général de l'éducation nationale

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Interview du CIRM : Sandrine Grellier - Grellier, Sandrine (Personne interviewée) | CIRM H

Post-edited

Professeur des universités à l'université d'Orléans
Membre du Laboratoire MAPMO
CNRS, Université d'Orléans

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview Martin Andler - Andler, Martin (Personne interviewée) | CIRM H

Post-edited

Professeur à l'université de Versailles-Saint-Quentin
Président de l'association Animath

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Interview Laure Saint Raymond - Saint-Raymond, Laure (Personne interviewée) | CIRM H

Post-edited

Professeur à l'Université Pierre et Marie Curie et au département de Mathématiques et applications de l'ENS
Membre du Laboratoire Jacques-Louis Lions
Laure Saint-Raymond a donné une conférence lors du premier Congrès de la Société Mathématique sur le thème "Echangeabilité, chaos et dissipation dans les grands systèmes de particules".

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Interview Marie-Françoise Roy - Roy, Marie-françoise (Personne interviewée) | CIRM H

Post-edited

Professeure émérite de Mathématiques Université de Rennes 1
Présidente du "Committe for Women in Mathematics"

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Interview Gérard Besson - Besson, Gérard (Personne interviewée) | CIRM H

Post-edited

Directeur de recherche au CNRS
Institut Fourier - Université de Grenoble 1

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview Cédric Villani - Villani, Cédric (Personne interviewée) | CIRM H

Post-edited

Directeur de l'Institut Henri Poincaré
Lauréat de la médaille Fields en 2010

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stationary measure for the open KPZ equation - Corwin, Ivan (Auteur de la Conférence) | CIRM H

Virtualconference

Consider the KPZ equation on a spatial interval $[0,1]$ with mixed Neumann boundary conditions at 0 and 1. For each given pair of boundary parameters $(\mathrm{u}, \mathrm{v})$, there should exist a unique stationary measure for the height profile differences (i.e., for the derivative of the KPZ equation). In this talk I will describe recent work in which we show that for each pair $(u, v)$ satisfying $u+v>0$, certain exponentially reweighted Brownian paths measures are stationary measures for the corresponding open KPZ equation. Along the way, we will also encounter the open ASEP, as well as Askey-Wilson processes and $q$ function asymptotics. This is mainly based on my recent work with Alisa Knizel, though also relies on earlier work with Hao Shen as well as earlier work of Wlodzimierz Bryc, Jacek Wesolowski and Yizao Wang. I will also touch on some recent related work of Wlodzimierz Bryc, Alexey Kuznetsov, Jacek Wesolowski and Yizao Wang; as well as work of Guillaume Barraquand and Pierre Le Doussal.[-]
Consider the KPZ equation on a spatial interval $[0,1]$ with mixed Neumann boundary conditions at 0 and 1. For each given pair of boundary parameters $(\mathrm{u}, \mathrm{v})$, there should exist a unique stationary measure for the height profile differences (i.e., for the derivative of the KPZ equation). In this talk I will describe recent work in which we show that for each pair $(u, v)$ satisfying $u+v>0$, certain exponentially reweighted ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Nonsymmetric Jack and Macdonald superpolynomials - Dunkl, Charles (Auteur de la Conférence) | CIRM H

Virtualconference

Superpolynomials are formed with $N$ commuting and anti-commuting (skew) variables. By considering the space of skew variables of fixed degree as a module of the symmetric group $\mathcal{S}_{N}$ the theory of generalized Jack polynomials constructed by S Griffeth can be used to define nonsymmetric Jack superpolynomials. We present the theory, give details about the structure and derive norm formulas. Denote the parameter by $\kappa$ then the norm is positive-definite for $-\frac{1}{N}<\kappa<\frac{1}{N}$. Analogously there is a structure as Hecke algebra $\mathcal{H}_{N}(t)$-module on the skew polynomials and this allows the use of the theory of vectorvalued $(q, t)$-Macdonald polynomials studied by J-G Luque and the author. We outline the theory and present norm formulas and evaluations at special points. The norm is positive-definite for $q>0$ and min $(q^{1 / N}, q^{-1 / N}) < t < max (q^{1 / N}, q^{-1 / N} )$. As in the scalar case the evaluations use $(q, t)$-hook products.[-]
Superpolynomials are formed with $N$ commuting and anti-commuting (skew) variables. By considering the space of skew variables of fixed degree as a module of the symmetric group $\mathcal{S}_{N}$ the theory of generalized Jack polynomials constructed by S Griffeth can be used to define nonsymmetric Jack superpolynomials. We present the theory, give details about the structure and derive norm formulas. Denote the parameter by $\kappa$ then the ...[+]

20C30 ; 20C08 ; 33C52 ; 05E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The goal of the talk is to present selected results in real harmonic analysis in the rational Dunkl setting. We shall start by deriving estimates for the generalized translations$$\tau_{\mathbf{x}} f(-\mathbf{y})=c_{k}^{-1} \int_{\mathbb{R}^{N}} E(\mathbf{x}, i \xi) E(\mathbf{y},-i \xi) \mathcal{F} f(\xi) d w(\xi)$$of certain radial and non-radial functions $f$ on $\mathbb{R}^{N}$, including estimates for the integral kernel of the heat Dunkl semigroup. Here $d w(\mathbf{x})=$ $\prod_{\alpha \in R}|\langle\alpha, \mathbf{x}\rangle|^{k(\alpha)} d \mathbf{x}$ denotes the associated measure, $E(\mathbf{x}, \mathbf{y})$ is the Dunkl kernel, and $\mathcal{F} f(\xi)=c_{k}^{-1} \int_{\mathbb{R}^{N}} f(\mathbf{x}) E(-i \xi, \mathbf{x}) f(\mathbf{x}) d w(\mathbf{x})$ is the Dunkl transform. The obtained estimates will be given by means of the distance $d(\mathbf{x}, \mathbf{y})$ of the orbit of $\mathbf{x}$ to the orbit of $\mathbf{y}$ under the action of the reflection group $G$, that is,$$d(\mathbf{x}, \mathbf{y})=\min _{\sigma \in G}\|\sigma(\mathbf{x})-\mathbf{y}\|$$the Euclidean distance $\|\mathbf{x}-\mathbf{y}\|$, and $d w$-volumes of the Euclidean balls and they will be in the spirit of estimates needed in real harmonic analysis on spaces of homogeneous type.Then, if time permits, we shall discuss selected results, parallel to classical ones, which are proved by utilizing the obtained estimates for the generalized translation. In particular, we will be interested in:- boundedness of maximal functions on various function spaces,- characterizations of the real Hardy space $H^{1}$ in the Dunkl setting- boundedness of the Dunkl transform multiplier operators,- boundedness of singular integral operators,- upper and lower bounds for Littlewood-Paley square functions. The results are joint works with Jean-Philippe Anker and Agnieszka Hejna.[-]
The goal of the talk is to present selected results in real harmonic analysis in the rational Dunkl setting. We shall start by deriving estimates for the generalized translations$$\tau_{\mathbf{x}} f(-\mathbf{y})=c_{k}^{-1} \int_{\mathbb{R}^{N}} E(\mathbf{x}, i \xi) E(\mathbf{y},-i \xi) \mathcal{F} f(\xi) d w(\xi)$$of certain radial and non-radial functions $f$ on $\mathbb{R}^{N}$, including estimates for the integral kernel of the heat Dunkl ...[+]

42B20 ; 42B25 ; 47B38 ; 47G10

Sélection Signaler une erreur