En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Abramovich, Dan 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The series aims to introduce resolution of singularities for non-experts, with foliation specialists in mind. The work discussed is joint with Andé Belotto da Silva, Michael Temkin and Jaroslaw Wlodarczyk.

Talk 2: Resolution of singularities in characteristic 0 - how does it work?

I continue to show that the criterion from Talk 1 holds true in characteristic 0.

14E15 ; 32S65 ; 32S45 ; 14A20 ; 14A21

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The series aims to introduce resolution of singularities for non-experts, with foliation specialists in mind. The work discussed is joint with Andé Belotto da Silva, Michael Temkin and Jaroslaw Wlodarczyk.

Talk 3: Resolution of singularities in characteristic 0 - foliated aspects.
I discuss resolution and principalization on foliated manifolds, and its implication on some cases of resolution of foliations.

14E15 ; 32S65 ; 32S45 ; 14A20 ; 14A21

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The series aims to introduce resolution of singularities for non-experts, with foliation specialists in mind. The work discussed is joint with Andé Belotto da Silva, Michael Temkin and Jaroslaw Wlodarczyk.

Talk 1: Resolution of singularities in characteristic 0 - why does it work?

I continue a long struggle to explain to non-experts why resolution of singularities in characteristic zero works. I explain a criterion, one paragraph in an article by Wlodarczyk, which tells you what you need in order to resolve singularities.[-]
The series aims to introduce resolution of singularities for non-experts, with foliation specialists in mind. The work discussed is joint with Andé Belotto da Silva, Michael Temkin and Jaroslaw Wlodarczyk.

Talk 1: Resolution of singularities in characteristic 0 - why does it work?

I continue a long struggle to explain to non-experts why resolution of singularities in characteristic zero works. I explain a criterion, one paragraph in an ...[+]

14E15 ; 32S65 ; 32S45 ; 14A20 ; 14A21

Sélection Signaler une erreur