En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Mathematics in Science and Technology 168 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the goals of shape analysis is to model and characterise shape evolution. We focus on methods where this evolution is modeled by the action of a time-dependent diffeomorphism, which is characterised by its time-derivatives: vector fields. Reconstructing the evolution of a shape from observations then amounts to determining an optimal path of vector fields whose flow of diffeomorphisms deforms the initial shape in accordance with the observations. However, if the space of considered vector fields is not constrained, optimal paths may be inaccurate from a modeling point of view. To overcome this problem, the notion of deformation module allows to incorporate prior information from the data into the set of considered deformations and the associated metric. I will present this generic framework as well as the Python library IMODAL, which allows to perform registration using such structured deformations. More specifically, I will focus on a recent implicit formulation where the prior can be expressed as a property that the generated vector field should satisfy. This imposed property can be of different categories that can be adapted to many use cases, such as constraining a growth pattern or imposing divergence-free fields.[-]
One of the goals of shape analysis is to model and characterise shape evolution. We focus on methods where this evolution is modeled by the action of a time-dependent diffeomorphism, which is characterised by its time-derivatives: vector fields. Reconstructing the evolution of a shape from observations then amounts to determining an optimal path of vector fields whose flow of diffeomorphisms deforms the initial shape in accordance with the ...[+]

68U10 ; 49N90 ; 49N45 ; 51P05 ; 53-04 ; 53Z05 ; 58D30 ; 65D18 ; 68-04 ; 92C15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of extended graphons, introduced in Jabin-Poyato-Soler, by introducing a novel notion of discrete observables in the system. This is a joint work with D. Zhou.[-]
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of ...[+]

35Q49 ; 35Q83 ; 35R02 ; 35Q70 ; 05C90 ; 60G09 ; 35R06 ; 35Q89 ; 35Q92 ; 49N80 ; 92B20 ; 65N75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of extended graphons, introduced in Jabin-Poyato-Soler, by introducing a novel notion of discrete observables in the system. This is a joint work with D. Zhou.[-]
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of ...[+]

35Q49 ; 35Q83 ; 35R02 ; 35Q70 ; 05C90 ; 60G09 ; 35R06 ; 35Q89 ; 49N80 ; 92B20 ; 65N75 ; 65N75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mathématiques du hasard et de l'évolution - Méléard, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

Lorsque l'on évoque Darwin et la théorie de l'évolution, on ne pense pas aux mathématiques. Pourtant dès que l'on s'intéresse aux mécanismes de la sélection naturelle, au hasard de la reproduction et au rôle des mutations, il est indispensable de les utiliser.
Après une introduction historique aux idées de Darwin sur l'évolution des espèces, nous expliquons l'impact de sa théorie et de ses réflexions sur la communauté scientifique et l'influence qu'il a eue sur la modélisation mathématique des dynamiques de population ou de la génétique des populations. Nous développons quelques exemples d'objets mathématiques, tels les processus de branchement, qui permettent de prédire le futur d'une population (son extinction, sa diversité…) ou au contraire d'en connaître le passé biologique (l'ancêtre commun d'un groupe d'individus par exemple). L'introduction du hasard dans la modélisation des questions liées à la biodiversité et à l'évolution est fondamentale. Elle permet de prendre en compte les variabilités individuelles et de mieux comprendre l'impact des facteurs écologiques et génétiques sur l'évolution des espèces.
Ces idées seront illustrées par des exemples issus de travaux récents développés entre mathématiciens et biologistes.[-]
Lorsque l'on évoque Darwin et la théorie de l'évolution, on ne pense pas aux mathématiques. Pourtant dès que l'on s'intéresse aux mécanismes de la sélection naturelle, au hasard de la reproduction et au rôle des mutations, il est indispensable de les utiliser.
Après une introduction historique aux idées de Darwin sur l'évolution des espèces, nous expliquons l'impact de sa théorie et de ses réflexions sur la communauté scientifique et l'influence ...[+]

00A06 ; 00A08 ; 92-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Modèles mathématiques des épidémies - Pardoux, Etienne (Auteur de la Conférence) | CIRM

Multi angle

Il y a cent ans, Sir Ronald Ross tentait de convaincre ses collègues médecins que l'épidémiologie doit être étudiée avec l'aide des mathématiques. Le but de cet exposé est d'expliquer pourquoi les mathématiques sont essentielles pour combattre les épidémies, et de donner quelques indications sur les avancées récentes de la modélisation mathématique en épidémiologie.

00A06 ; 00A08 ; 92C60 ; 92D30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion of companies that default at the same time. From a mathematical point of view, the coefficient of proportionality, denoted by a, is of great importance as the resulting system is known to blow-up when a takes large values, a blow-up meaning that a macroscopic proportion of companies may default at the same time. In the current talk, we focus on the complementary regime and prove that existence and uniqueness hold in arbitrary time without any blow-up when the excitatory parameter is small enough.[-]
Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion ...[+]

35K60 ; 82C31 ; 92B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - ...[+]

15-XX ; 41-XX ; 42-XX ; 46-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Energy investment into maturation encompasses any expenses linked to tissue differentiation, i.e. re-organization of body structure during development. This is different from growth which can be conceptualized as synthesis of more of the same. Energy invested into growth is fixed into the biomass of the organism (with some overheads), but energy invested in maturation is oxidized as metabolic work making it more difficult to quantify in practice. Nonetheless it can be quantified and it can even represent a substantial part of the energy budget of living organisms. In this talk I will give an overview of different studies where investment in maturity was quantified. The focus will be on 4 different types of organisms: cnidarians, ctenophores, teleost fish and frogs. I will further discuss what type of eco-physiological effects might be expected when an organism modifies its investment into these processes. Some intriguing literature studies will be presented which can be re-interpreted in perhaps unexpected ways when investment into maturation is taken into account. This raises the question of just how important and how flexible such costs might actually be. Maturity can be used as a quantifier for internal time. Seven criteria were proposed which should be respected by any such metric: (1) independent of morphology, (2) independent of body size, (3) depend on one a priori homologous event, (4) unaffected by changes in temperature, (5) similar between closely related species, (6) increase with clock time, and (7) physically quantifiable (Reiss 1989). We showed that the maturity concept of Dynamic Energy Budget theory complies with all those criteria and on the basis of this information and the studies presented above I will finish by discussing the potential role of maturity in shaping metabolic flexibility.[-]
Energy investment into maturation encompasses any expenses linked to tissue differentiation, i.e. re-organization of body structure during development. This is different from growth which can be conceptualized as synthesis of more of the same. Energy invested into growth is fixed into the biomass of the organism (with some overheads), but energy invested in maturation is oxidized as metabolic work making it more difficult to quantify in ...[+]

92D25 ; 92D40 ; 92C30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Oxygen is essential for burning food and generate energy, but may become limiting for aquatic organisms that rely on gas exchange under water. This is because breathing under water is challenging: the diffusion of oxygen is orders of magnitude lower in water than in air, while the higher density and viscosity of water greatly enhance the cost of breathing. Given that oxygen may be also be a limiting resource, respiration physiology may be relevant to understand energy budgets in aquatic ectotherms.
Traditionally, respiration physiology has focused on the benefits of extracting sufficient amounts of oxygen and thus prevent asphyxiation. However, breathing oxygen is intrinsically dangerous: while a shortage of oxygen quickly leads to asphyxiation, too much oxygen is toxic. Therefore, the ability to regulate oxygen consumption rates (i.e. respiratory control) is at a premium; good respiratory control will enable ectotherms to balance oxygen toxicity against the risk of asphyxiation across a wide range of temperatures.
In this presentation I will focus on the effects of body size and temperature on this balancing act with regard to oxygen uptake and consumption. Body size is intimately tied to oxygen budgets and hence energy budgets through size related changes in oxygen requirements and respiratory surfaces. Furthermore, a larger body size may represent a respiratory advantage that helps to overcome viscosity. Given that viscous forces are larger in cold water, this respiratory advantage represents a novel explanation for the pattern of larger body sizes in cold water, with polar gigantism as the extreme manifestation.
Temperature is also intimately tied to oxygen budgets and hence energy budgets through thermal controls on metabolism and temperature related changes in the availability of dissolved oxygen (notably diffusivity, viscosity and solubility). Thus, differences in temperatures may act more strongly on ectotherms that rely on aquatic rather than on aerial gas exchange. Comparing four different insect orders, I demonstrate that thermal tolerance is indeed affected more by the prevalent oxygen conditions in species with poor respiration control. In conclusion, the ability to regulate gas exchange (i.e. respiratory control) is thus a key attribute of species that helps to explain thermal responses from an oxygen perspective.[-]
Oxygen is essential for burning food and generate energy, but may become limiting for aquatic organisms that rely on gas exchange under water. This is because breathing under water is challenging: the diffusion of oxygen is orders of magnitude lower in water than in air, while the higher density and viscosity of water greatly enhance the cost of breathing. Given that oxygen may be also be a limiting resource, respiration physiology may be ...[+]

92D25 ; 92D50 ; 92C15 ; 92C30

Sélection Signaler une erreur