Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The spectral properties of a singularly perturbed self-adjoint Landau Hamiltonian in the plane with a delta-potential supported on a finite curve are studied. After a general discussion of the qualitative spectral properties of the perturbed Landau Hamiltonian and its resolvent, one of our main objectives is a local spectral analysis near the Landau levels.
This talk is based on joint works with P. Exner, M. Holzmann, V. Lotoreichik, and G. Raikov.
[-]
The spectral properties of a singularly perturbed self-adjoint Landau Hamiltonian in the plane with a delta-potential supported on a finite curve are studied. After a general discussion of the qualitative spectral properties of the perturbed Landau Hamiltonian and its resolvent, one of our main objectives is a local spectral analysis near the Landau levels.
This talk is based on joint works with P. Exner, M. Holzmann, V. Lotoreichik, and G. ...
[+]
47A55 ; 47N50 ; 81Q10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal dimensional reduction, I will explain how to derive a very precise Weyl law and a proof of quantum magnetic oscillations for excited states, and also how to refine simultaneously old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.
Joint work with R. Fahs, L. Le Treust and S. Vu Ngoc.
[-]
In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal d...
[+]
81Q10 ; 35Pxx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One-particle density matrix is the key object in the quantum-mechanical approximation schemes. In this talk I will give a short survey of recent regularity results with emphasis on sharp bounds for the eigenfunctions, and show how these bounds lead to the asymptotic formula for the eigenvalues of the one-particle density matrix. The argument is based on the results of M. Birman and M. Solomyak on spectral asymptotics for pseudo-differential operators with matrix-valued symbols.
[-]
One-particle density matrix is the key object in the quantum-mechanical approximation schemes. In this talk I will give a short survey of recent regularity results with emphasis on sharp bounds for the eigenfunctions, and show how these bounds lead to the asymptotic formula for the eigenvalues of the one-particle density matrix. The argument is based on the results of M. Birman and M. Solomyak on spectral asymptotics for pseudo-differential ...
[+]
35J10 ; 47G10