En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 4 résultats

Filtrer
Sélectionner : Tous / Aucun
P Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The spectral properties of a singularly perturbed self-adjoint Landau Hamiltonian in the plane with a delta-potential supported on a finite curve are studied. After a general discussion of the qualitative spectral properties of the perturbed Landau Hamiltonian and its resolvent, one of our main objectives is a local spectral analysis near the Landau levels.
This talk is based on joint works with P. Exner, M. Holzmann, V. Lotoreichik, and G. Raikov.[-]
The spectral properties of a singularly perturbed self-adjoint Landau Hamiltonian in the plane with a delta-potential supported on a finite curve are studied. After a general discussion of the qualitative spectral properties of the perturbed Landau Hamiltonian and its resolvent, one of our main objectives is a local spectral analysis near the Landau levels.
This talk is based on joint works with P. Exner, M. Holzmann, V. Lotoreichik, and G. ...[+]

47A55 ; 47N50 ; 81Q10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Georgi's game of twist - Krejcirik, David (Auteur de la Conférence) | CIRM H

Multi angle

We give an account on the contribution of Georgi Raikov to the spectral theory of quantum waveguides. Inter alia, our joint paper with Werner Kirsch on randomly twisted tubes is presented.

35P15 ; 58J50 ; 81Q10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Boundary states of the magnetic Robin Laplacian - Raymond, Nicolas (Auteur de la Conférence) | CIRM H

Multi angle

In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal dimensional reduction, I will explain how to derive a very precise Weyl law and a proof of quantum magnetic oscillations for excited states, and also how to refine simultaneously old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.
Joint work with R. Fahs, L. Le Treust and S. Vu Ngoc.[-]
In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal d...[+]

81Q10 ; 35Pxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One-particle density matrix is the key object in the quantum-mechanical approximation schemes. In this talk I will give a short survey of recent regularity results with emphasis on sharp bounds for the eigenfunctions, and show how these bounds lead to the asymptotic formula for the eigenvalues of the one-particle density matrix. The argument is based on the results of M. Birman and M. Solomyak on spectral asymptotics for pseudo-differential operators with matrix-valued symbols.[-]
One-particle density matrix is the key object in the quantum-mechanical approximation schemes. In this talk I will give a short survey of recent regularity results with emphasis on sharp bounds for the eigenfunctions, and show how these bounds lead to the asymptotic formula for the eigenvalues of the one-particle density matrix. The argument is based on the results of M. Birman and M. Solomyak on spectral asymptotics for pseudo-differential ...[+]

35J10 ; 47G10

Sélection Signaler une erreur