En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14D05 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zeta functions and monodromy - Veys, Wim (Author of the conference) | CIRM H

Post-edited

The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of $f$, its local monodromy. We will discuss in this survey talk rationality issues for these zeta functions and the origins of the conjecture.[-]
The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of ...[+]

14D05 ; 11S80 ; 11S40 ; 14E18 ; 14J17

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$D$-modules and $p$-curvatures - Esnault, Hélène (Author of the conference) | CIRM H

Multi angle

We show relations between rigidity of connections in characteristic 0 and nilpotency of their $p$-curvatures (a consequence of a conjecture by Simpson and of a generalization of Grothendieck's $p$-curvature conjecture).
Work in progress with Michael Groechenig.

14D05 ; 14E20 ; 14F05 ; 14F35 ; 14G17

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We compare the topological Milnor fibration and the motivic Milnor fibreby introducing a common extension : the complete Milnor fibration. This extension is constructed using either logarithmic geometry or an oriented (multi)graph construction, for a complex regular function with only normal crossings. The comparison uses quotients by the action of the group of positive real numbers. We study moreover how this model changes under blowings-up. Joint work with J.-B. Campesato and A. Parusinski.[-]
We compare the topological Milnor fibration and the motivic Milnor fibreby introducing a common extension : the complete Milnor fibration. This extension is constructed using either logarithmic geometry or an oriented (multi)graph construction, for a complex regular function with only normal crossings. The comparison uses quotients by the action of the group of positive real numbers. We study moreover how this model changes under blowings-up. ...[+]

14D05 ; 14E18

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In their preprint about the Shafarevich conjecture for hypersurfaces on abelian varieties, Lawrence and Sawin prove a big monodromy theorem for families of hypersurfaces by reducing it to a similar result for Tannaka groups of perverse intersection complexes. A large part of their work is an intricate combinatorial argument about Hodge numbers, which is used to exclude that the Tannaka group acts via wedge powers of the standard representation of SL(n). We explain a simple geometric proof of the analogous result when hypersurfaces are replaced by subvarieties of high codimension; this is joint work in progress with Ariyan Javanpeykar, Christian Lehn and Marco Maculan.[-]
In their preprint about the Shafarevich conjecture for hypersurfaces on abelian varieties, Lawrence and Sawin prove a big monodromy theorem for families of hypersurfaces by reducing it to a similar result for Tannaka groups of perverse intersection complexes. A large part of their work is an intricate combinatorial argument about Hodge numbers, which is used to exclude that the Tannaka group acts via wedge powers of the standard representation ...[+]

14K12 ; 32S40 ; 32S60 ; 14D05

Bookmarks Report an error