En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14E18 13 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Motivic Milnor fibre and logarithmic geometry - Fichou, Goulwen (Author of the conference) | CIRM H

Multi angle

We provide a description of the motivic and topological Milnor fibre of a regular function with only normal crossing singularities using logarithmic geometry. This approach resembles the description of the geometry monodromy using real oriented blowing-up given by Norbert A'Campo in 1975. Joint work with Jean-Baptiste Campesato and Adam Parusinski

32S55 ; 14E18 ; 14B05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hensel minimality - Rideau-Kikuchi, Silvain (Author of the conference) | CIRM H

Multi angle

As exemplified by o-minimality, imposing strong restrictions on the complexity of definable subsets of the affine line can lead to a rich tame geometry in all dimensions. There has been multiple attempts to replicate that phenomenon in non-archimedean geometry (C, P, V, b minimality) but they tend to either only apply to specific valued fields or require geometric input. In this talk I will present another such notion, h-minimality, which covers all known well behaved characteristic zero valued fields and has strong analytic and geometric consequences. By analogy with o-minimality, this notion requires that definable sets of the affine line are controlled by a finite number of points. Contrary to o-minimality though, one has to take special care of how this finite set is defined, leading to a whole family of notions of h-minimality. This notion has been developed in the past years by a number of authors and I will try to paint a general picture of their work and, in particular, how it compares to the archimedean picture.[-]
As exemplified by o-minimality, imposing strong restrictions on the complexity of definable subsets of the affine line can lead to a rich tame geometry in all dimensions. There has been multiple attempts to replicate that phenomenon in non-archimedean geometry (C, P, V, b minimality) but they tend to either only apply to specific valued fields or require geometric input. In this talk I will present another such notion, h-minimality, which covers ...[+]

03C99 ; 03C65 ; 12J20 ; 11D88 ; 03C98 ; 14E18 ; 41A58

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zeta functions and monodromy - Veys, Wim (Author of the conference) | CIRM H

Post-edited

The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of $f$, its local monodromy. We will discuss in this survey talk rationality issues for these zeta functions and the origins of the conjecture.[-]
The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of ...[+]

14D05 ; 11S80 ; 11S40 ; 14E18 ; 14J17

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We compare the topological Milnor fibration and the motivic Milnor fibreby introducing a common extension : the complete Milnor fibration. This extension is constructed using either logarithmic geometry or an oriented (multi)graph construction, for a complex regular function with only normal crossings. The comparison uses quotients by the action of the group of positive real numbers. We study moreover how this model changes under blowings-up. Joint work with J.-B. Campesato and A. Parusinski.[-]
We compare the topological Milnor fibration and the motivic Milnor fibreby introducing a common extension : the complete Milnor fibration. This extension is constructed using either logarithmic geometry or an oriented (multi)graph construction, for a complex regular function with only normal crossings. The comparison uses quotients by the action of the group of positive real numbers. We study moreover how this model changes under blowings-up. ...[+]

14D05 ; 14E18

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will report on work with Stout from arXiv:2304.12267. Since the work by Denef, p-adic cell decomposition provides a well-established method to study p-adic and motivic integrals. In this paper, we present a variant of this method that keeps track of existential quantifiers. This enables us to deduce descent properties for p-adic integrals. We will explain all this in the talk.

03C98 ; 11U09 ; 14B05 ; 11S40 ; 14E18 ; 11F23

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present an adaptation of Cluckers-Loeser's theory of motivic constructible functions to the case of pseudo-finite residue field. This new tool allows us to prove a motivic version of Ngô's geometric stabilization theorem, inspired by the proof of Groechenig, Wyss and Ziegler. This in turns implies a motivic version of the fundamental lemma of Langlands-Shelstad. This is joint work with François Loeser and Dimitri Wyss.

14H60 ; 14E18

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Bookmarks Report an error