En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14E18 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Zeta functions and monodromy - Veys, Wim (Auteur de la Conférence) | CIRM H

Post-edited

The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of $f$, its local monodromy. We will discuss in this survey talk rationality issues for these zeta functions and the origins of the conjecture.[-]
The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of ...[+]

14D05 ; 11S80 ; 11S40 ; 14E18 ; 14J17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Motivic Milnor fibre and logarithmic geometry - Fichou, Goulwen (Auteur de la Conférence) | CIRM H

Multi angle

We provide a description of the motivic and topological Milnor fibre of a regular function with only normal crossing singularities using logarithmic geometry. This approach resembles the description of the geometry monodromy using real oriented blowing-up given by Norbert A'Campo in 1975. Joint work with Jean-Baptiste Campesato and Adam Parusinski

32S55 ; 14E18 ; 14B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hensel minimality - Rideau-Kikuchi, Silvain (Auteur de la Conférence) | CIRM H

Multi angle

As exemplified by o-minimality, imposing strong restrictions on the complexity of definable subsets of the affine line can lead to a rich tame geometry in all dimensions. There has been multiple attempts to replicate that phenomenon in non-archimedean geometry (C, P, V, b minimality) but they tend to either only apply to specific valued fields or require geometric input. In this talk I will present another such notion, h-minimality, which covers all known well behaved characteristic zero valued fields and has strong analytic and geometric consequences. By analogy with o-minimality, this notion requires that definable sets of the affine line are controlled by a finite number of points. Contrary to o-minimality though, one has to take special care of how this finite set is defined, leading to a whole family of notions of h-minimality. This notion has been developed in the past years by a number of authors and I will try to paint a general picture of their work and, in particular, how it compares to the archimedean picture.[-]
As exemplified by o-minimality, imposing strong restrictions on the complexity of definable subsets of the affine line can lead to a rich tame geometry in all dimensions. There has been multiple attempts to replicate that phenomenon in non-archimedean geometry (C, P, V, b minimality) but they tend to either only apply to specific valued fields or require geometric input. In this talk I will present another such notion, h-minimality, which covers ...[+]

03C99 ; 03C65 ; 12J20 ; 11D88 ; 03C98 ; 14E18 ; 41A58

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the second lecture. The last two lectures are devoted to some applications of arc spaces toward a conjecture on minimal log discrepancies known as inversion of adjunction. Minimal log discrepancies are invariants of singularities appearing in the minimal model program, a quick overview of which is given in the third lecture.[-]
The space of formal arcs of an algebraic variety carries part of the information encoded in a resolution of singularities. This series of lectures addresses this fact from two perspectives. In the first two lectures, we focus on the topology of the space of arcs, proving Kolchin's irreducibility theorem and discussing the Nash problem on families of arcs through the singularities of the variety; recent results on this problem are proved in the ...[+]

14E18 ; 14E15 ; 13A18 ; 14B05 ; 14E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu.[-]
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...[+]

14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu.[-]
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...[+]

14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu.[-]
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...[+]

14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22

Sélection Signaler une erreur