En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 47B35 15 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
About fifteen years ago, Patrick Gérard and I introduced the cubic Szegö equation$$\begin{aligned}i \partial_{t} u & =\Pi\left(|u|^{2} u\right), \quad u=u(x, t), \quad x \in \mathbb{T}, t \in \mathbb{R} \\u(x, 0) & =u_{0}(x) .\end{aligned}$$Here $\Pi$ denotes the Szegö projector which maps $L^{2}(\mathbb{T})$-functions into the Hardy space of $L^{2}(\mathbb{T})$-traces of holomorphic functions in the unit disc. It turned out that the dynamics of this equation were unexpected. This motivated us to try to understand whether the cubic Szegö equation is an isolated phenomenon or not. This talk is part of this project.
We consider a family of perturbations of the cubic Szegö equation and look for their traveling waves. Let us recall that traveling waves are particular solutions of the form$$u(x, t)=\mathrm{e}^{-i \omega t} u_{0}\left(\mathrm{e}^{-i c t} x\right), \quad \omega, c \in \mathbb{R}$$We will explain how the spectral analysis of some operators allows to characterize them.
From joint works with Patrick Gérard.[-]
About fifteen years ago, Patrick Gérard and I introduced the cubic Szegö equation$$\begin{aligned}i \partial_{t} u & =\Pi\left(|u|^{2} u\right), \quad u=u(x, t), \quad x \in \mathbb{T}, t \in \mathbb{R} \\u(x, 0) & =u_{0}(x) .\end{aligned}$$Here $\Pi$ denotes the Szegö projector which maps $L^{2}(\mathbb{T})$-functions into the Hardy space of $L^{2}(\mathbb{T})$-traces of holomorphic functions in the unit disc. It turned out that the dynamics of ...[+]

35B05 ; 35B65 ; 47B35 ; 37K15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Products of Toeplitz operators on the Fock space - Zhu, Kehe (Author of the conference) | CIRM H

Multi angle

Let $f$ and $g$ be functions, not identically zero, in the Fock space $F^2$ of $C^n$. We show that the product $T_fT_\bar{g}$ of Toeplitz operators on $F^2$ is bounded if and only if $f= e^p$ and $g= ce^{-p}$, where $c$ is a nonzero constant and $p$ is a linear polynomial.

47B35 ; 30H20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give a survey of the operator theory that is currently evolving on Hardy spaces of Dirichlet series. We will consider recent results about multiplicative Hankel operators as introduced and studied by Helson and developments building on the Gordon-Hedenmalm theorem on bounded composition operators on the $H^2$ space of Dirichlet series.

47B35 ; 30B50 ; 30H10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Invariant Subspace Problem for (separable) Hilbert spaces is a long-standing open question that traces back to Jonhn Von Neumann's works in the fifties asking, in particular, if every bounded linear operator acting on an infinite dimensional separable Hilbert space has a non-trivial closed invariant subspace. Whereas there are well-known classes of bounded linear operators on Hilbert spaces that are known to have non-trivial, closed invariant subspaces (normal operators, compact operators, polynomially compact operators,...), the question of characterizing the lattice of the invariant subspaces of just a particular bounded linear operator is known to be extremely difficult and indeed, it may solve the Invariant Subspace Problem.

In this talk, we will focus on those concrete operators that may solve the Invariant Subspace Problem, presenting some of their main properties, exhibiting old and new examples and recent results about them obtained in collaboration with Prof. Carl Cowen (Indiana University-Purdue University).[-]
The Invariant Subspace Problem for (separable) Hilbert spaces is a long-standing open question that traces back to Jonhn Von Neumann's works in the fifties asking, in particular, if every bounded linear operator acting on an infinite dimensional separable Hilbert space has a non-trivial closed invariant subspace. Whereas there are well-known classes of bounded linear operators on Hilbert spaces that are known to have non-trivial, closed ...[+]

47A15 ; 47B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform analyticity for a large set of initial data, turbulence phenomenon for a dense set of smooth initial data in large Sobolev spaces.
From joint works with Patrick Gérard.[-]
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform ...[+]

35B40 ; 35B15 ; 35Q55 ; 37K15 ; 47B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models.

In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular.

Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations.

The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.[-]
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. ...[+]

47B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models.

In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular.

Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations.

The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.[-]
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. ...[+]

47B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. This expansion is useful in describing many statistical quantities variables for certain random matrix models.

In other instances, where the above expression must be modified, the asymptotics correspond to critical temperature cases in the Ising Model, or to cases where the random variables are in some sense singular.

Generalizations of the above result to other settings, for example, convolution operators on the line, are also important. For example, for Wiener-Hopf operators, the analogue of the determinants of finite matrices is a Fredholm determinant. These determinants are especially prominent in random matrix theory where they describe many quantities including the distribution of the largest eigenvalue in the classic Gaussian Unitary Ensemble, and in turn connections to Painleve equations.

The lectures will use operator theory methods to first describe the simplest cases of the asymptotics of determinants for the convolution (both discrete and continuous) operators, then proceed to the more singular cases. Operator theory techniques will also be used to illustrate the links to the Painlevé equations.[-]
These lectures will focus on understanding properties of classical operators and their connections to other important areas of mathematics. Perhaps the simplest example is the asymptotics of determinants of finite Toepltiz matrices, which have constants along the diagonals. The determinants of these $n$ by $n$ size matrices, have (in appropriate cases) an asymptotic expression that is of the form $G^n \times E$ where both G and E are constants. ...[+]

47B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Starting with Onsager's celebrated solution of the two-dimensional Ising model in the 1940's, Toeplitz determinants have been one of the principal analytic tools in modern mathematical physics; specifically, in the theory of exactly solvable statistical mechanics and quantum field models. Simultaneously, the theory of Toeplitz determinants is a very beautiful area of analysis representing an unusual combinations of profound general operator concepts with the highly nontrivial concrete formulae. The area has been thriving since the classical works of Szegö Fisher and Hartwig and Widom, and it very much continues to do so.

In the 90s, it has been realized that the theory of Toeplitz and Hankel determinants can be also embedded in the Riemann-Hilbert formalism of integrable systems. The new Riemann-Hilbert techniques proved very efficient in solving some of the long-standing problems in the area. Among them are the Basor-Tracy conjecture concerning the asymptotics of Toeplitz determinants with the most general Fisher-Hartwig type symbols and the double scaling asymptotics describing the transition behavior of Toeplitz determinants whose symbols change from smooth, Szegö to singular Fisher-Hartwig types. An important feature of these transition asymptotics is that they are described in terms of the classical Painlevè transcendents. The later are playing an increasingly important role in modern mathematics. Indeed, very often, the Painlevé functions are called now ``special functions of 21st century''.

In this mini course, the essence of the Riemann-Hilbert method in the theory of Topelitz determinants will be presented. The focus will be on the use of the method to obtain the Painlevé type description of the transition asymptotics of Toeplitz determinants. The Riemann-Hilbert view on the Painlevé function will be also explained.[-]
Starting with Onsager's celebrated solution of the two-dimensional Ising model in the 1940's, Toeplitz determinants have been one of the principal analytic tools in modern mathematical physics; specifically, in the theory of exactly solvable statistical mechanics and quantum field models. Simultaneously, the theory of Toeplitz determinants is a very beautiful area of analysis representing an unusual combinations of profound general operator ...[+]

47B35 ; 35Q15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Starting with Onsager's celebrated solution of the two-dimensional Ising model in the 1940's, Toeplitz determinants have been one of the principal analytic tools in modern mathematical physics; specifically, in the theory of exactly solvable statistical mechanics and quantum field models. Simultaneously, the theory of Toeplitz determinants is a very beautiful area of analysis representing an unusual combinations of profound general operator concepts with the highly nontrivial concrete formulae. The area has been thriving since the classical works of Szegö Fisher and Hartwig and Widom, and it very much continues to do so.

In the 90s, it has been realized that the theory of Toeplitz and Hankel determinants can be also embedded in the Riemann-Hilbert formalism of integrable systems. The new Riemann-Hilbert techniques proved very efficient in solving some of the long-standing problems in the area. Among them are the Basor-Tracy conjecture concerning the asymptotics of Toeplitz determinants with the most general Fisher-Hartwig type symbols and the double scaling asymptotics describing the transition behavior of Toeplitz determinants whose symbols change from smooth, Szegö to singular Fisher-Hartwig types. An important feature of these transition asymptotics is that they are described in terms of the classical Painlevè transcendents. The later are playing an increasingly important role in modern mathematics. Indeed, very often, the Painlevé functions are called now ``special functions of 21st century''.

In this mini course, the essence of the Riemann-Hilbert method in the theory of Topelitz determinants will be presented. The focus will be on the use of the method to obtain the Painlevé type description of the transition asymptotics of Toeplitz determinants. The Riemann-Hilbert view on the Painlevé function will be also explained.[-]
Starting with Onsager's celebrated solution of the two-dimensional Ising model in the 1940's, Toeplitz determinants have been one of the principal analytic tools in modern mathematical physics; specifically, in the theory of exactly solvable statistical mechanics and quantum field models. Simultaneously, the theory of Toeplitz determinants is a very beautiful area of analysis representing an unusual combinations of profound general operator ...[+]

47B35 ; 35Q15

Bookmarks Report an error