En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q55 22 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Extreme superposition: rogue waves of infinite order - Bilman, Deniz (Auteur de la Conférence) | CIRM H

Multi angle

The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and near-field limit of a broad class of solutions of the same equation. In this talk, we will present several recent results on the emergence of these special solutions along with their interesting asymptotic and exact properties. Notably, these solutions exhibit anomalously slow temporaldecay and are connected to the third Painlev´e equation. Finally, we will extend the emergence of rogue waves of infinite order to the first several flows of the AKNS hierarchy — allowing for arbitrarily many simultaneous flows — and report on recent work regarding their space-time asymptotic behavior under a general flow from the hierarchy.[-]
The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and ...[+]

35Q55 ; 35Q15 ; 35Q51 ; 37K10 ; 37K15 ; 37K40 ; 34M55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Continuum Calogero–Moser models - Laurens, Thierry (Auteur de la Conférence) | CIRM H

Multi angle

The focusing Continuum Calogero–Moser (CCM) equation is a completely integrable PDE that describes a continuum limit of a particle gas interacting pairwise through an inverse square potential. This system is well-posed in the scaling-critical space L2 below the mass of the soliton, but above this threshold there are solutions that blow up in finite time. In this talk, we will discuss some new and existing results about solutions below the soliton mass threshold. This is based on joint work with Rowan Killip and Monica Visan.[-]
The focusing Continuum Calogero–Moser (CCM) equation is a completely integrable PDE that describes a continuum limit of a particle gas interacting pairwise through an inverse square potential. This system is well-posed in the scaling-critical space L2 below the mass of the soliton, but above this threshold there are solutions that blow up in finite time. In this talk, we will discuss some new and existing results about solutions below the ...[+]

35Q55 ; 37K10 ; 35Q70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Soliton resolution for derivative NLS equation - Sulem, Catherine (Auteur de la Conférence) | CIRM H

Multi angle

We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as the correction dispersive term. We use the inverse scattering approach and the nonlinear steepest descent method of Deift and Zhou (1993) revisited by the $\bar{\partial}$-analysis of Dieng-McLaughlin (2008) and complemented by the recent work of Borghese-Jenkins-McLaughlin (2016) on soliton resolution for the focusing nonlinear Schrödinger equation. This is a joint work with R. Jenkins, J. Liu and P. Perry.[-]
We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as ...[+]

35Q55 ; 37K15 ; 37K40 ; 35P25 ; 35A01

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up multi-solitary waves blowing up in infinite time with logarithmic rate.
These special behaviours are due to strong interactions between the waves, in contrast with most previous works on multi-solitary waves of (NLS) where interactions do not affect the general behaviour of each solitary wave.[-]
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up ...[+]

35Q55 ; 76B25 ; 35Q51 ; 35C08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Solitons vs collapses - Kuznetsov, Evgenii (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrodinger equation, the ZK equation and the three-wave system is used to show how the boundedness of the Hamiltonian H, and hence the stability of the soliton minimizing H can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
This work was supported by the Russian Science Foundation (project no. 14-22-00174).[-]
This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation ...[+]

35Q53 ; 35Q55 ; 37K10 ; 37N10 ; 76B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Geometric heat flows and caloric gauges - Tataru, Daniel (Auteur de la Conférence) | CIRM H

Multi angle

Choosing favourable gauges is a crucial step in the study of nonlinear geometric dispersive equations. A very successful tool, that has emerged originally in work of Tao on wave maps, is the use of caloric gauges, defined via the corresponding geometric heat flows. The aim of this talk is to describe two such flows and their associated gauges, namely the harmonic heat flow and the Yang-Mills heat flow.

70S15 ; 35Q53 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
To illustrate specifically quantum behaviours, the talk will consider three typical problems for non-linear kinetic models evolving through pair collisions at temperatures not far from absolute zero. Based on those examples, a number of differences between quantum and classical Boltzmann theory is discussed in more general term.

82D50 ; 76Y05 ; 82D30 ; 35Q60 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss the convergence (in the semiclassical limit) of a solution to the Hartree-Fock equation towards an operator, whose Wigner transform is a solution to the Vlasov equation. We will consider both cases of positive and zero temperature. The results we will present are part of a project in collaboration with N. Benedikter, M. Porta and B. Schlein.

82C22 ; 82C10 ; 35Q40 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the nonlinear Schrödinger equation in the partially periodic setting $\mathbb{R}^d\times \mathbb{T}$. We present some recent results obtained in collaboration with N. Tzvetkov concerning the Cauchy theory and the long-time behavior of the solutions.

nonlinear Schrödinger equation - Cauchy theory - scattering

35Q55 ; 35B40 ; 35P25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk is devoted to the study of the following inverse boundary value problem: given a Riemannian manifold with boundary determine the magnetic potential in a dynamical Schrödinger equation in a magnetic field from the observations made at the boundary.

inverse problem - Schrödinger equation - magnetic field

35R30 ; 35Q55 ; 35R35 ; 35Q60

Sélection Signaler une erreur