En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q55 20 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Emergent anyons in quantum Hall physics - Rougerie, Nicolas (Auteur de la Conférence) | CIRM H

Post-edited

Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I will argue that, under certain circumstances, these become anyons. This is made manifest by the emergence of a particular effective Hamiltonian for their motion. The latter is notoriously hard to solve even in simple cases, and well-controled simplifications are highly desirable. I will discuss a possible mean-field approximation, leading to a one-particle energy functional with self-consistent magnetic field.[-]
Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I ...[+]

82B10 ; 81S05 ; 35P15 ; 35Q40 ; 35Q55 ; 81V70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up multi-solitary waves blowing up in infinite time with logarithmic rate.
These special behaviours are due to strong interactions between the waves, in contrast with most previous works on multi-solitary waves of (NLS) where interactions do not affect the general behaviour of each solitary wave.[-]
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up ...[+]

35Q55 ; 76B25 ; 35Q51 ; 35C08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Solitons vs collapses - Kuznetsov, Evgenii (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrodinger equation, the ZK equation and the three-wave system is used to show how the boundedness of the Hamiltonian H, and hence the stability of the soliton minimizing H can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
This work was supported by the Russian Science Foundation (project no. 14-22-00174).[-]
This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation ...[+]

35Q53 ; 35Q55 ; 37K10 ; 37N10 ; 76B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Highly-oscillatory evolution equations: averaging and numerics - Lemou, Mohammed (Auteur de la Conférence) | CIRM H

Virtualconference

Usual numerical methods become inefficient when they are applied to highly oscillatory evolution problems (order reduction or complete loss of accuracy). The numerical parameters must indeed be adapted to the high frequencies that come into play to correctly capture the desired information, and this induces a prohibitive computational cost. Furthermore, the numerical resolution of averaged models, even at high orders, is not sufficient to capture low frequencies and transition regimes. We present (very briefly) two strategies allowing to remove this obstacle for a large class of evolution problems : a 2-scale method and a micro/macro method. Two different frameworks will be considered : constant frequency, and variable - possibly vanishing - frequency. The result of these approaches is the construction of numerical schemes whose order of accuracy no longer depends on the frequency of oscillation, one then speaks of uniform accuracy (UA) for these schemes. Finally, a new technique for systematizing these two methods will be presented. Its purpose is to reduce the number of inputs that the user must provide to apply the method in practice. In other words, only the values of the field defining the evolution equation (and not its derivatives) are used.These methods have been successfully applied to solve a number of evolution models: non-linear Schrödinger and Klein-Gordon equations, Vlasov-Poisson kinetic equation with strong magnetic field, quantum transport in graphene.[-]
Usual numerical methods become inefficient when they are applied to highly oscillatory evolution problems (order reduction or complete loss of accuracy). The numerical parameters must indeed be adapted to the high frequencies that come into play to correctly capture the desired information, and this induces a prohibitive computational cost. Furthermore, the numerical resolution of averaged models, even at high orders, is not sufficient to ...[+]

65L05 ; 35Q55 ; 37L05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
To illustrate specifically quantum behaviours, the talk will consider three typical problems for non-linear kinetic models evolving through pair collisions at temperatures not far from absolute zero. Based on those examples, a number of differences between quantum and classical Boltzmann theory is discussed in more general term.

82D50 ; 76Y05 ; 82D30 ; 35Q60 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss the convergence (in the semiclassical limit) of a solution to the Hartree-Fock equation towards an operator, whose Wigner transform is a solution to the Vlasov equation. We will consider both cases of positive and zero temperature. The results we will present are part of a project in collaboration with N. Benedikter, M. Porta and B. Schlein.

82C22 ; 82C10 ; 35Q40 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the nonlinear Schrödinger equation in the partially periodic setting $\mathbb{R}^d\times \mathbb{T}$. We present some recent results obtained in collaboration with N. Tzvetkov concerning the Cauchy theory and the long-time behavior of the solutions.

nonlinear Schrödinger equation - Cauchy theory - scattering

35Q55 ; 35B40 ; 35P25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk is devoted to the study of the following inverse boundary value problem: given a Riemannian manifold with boundary determine the magnetic potential in a dynamical Schrödinger equation in a magnetic field from the observations made at the boundary.

inverse problem - Schrödinger equation - magnetic field

35R30 ; 35Q55 ; 35R35 ; 35Q60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean field limits for Ginzburg-Landau vortices - Serfaty, Sylvia (Auteur de la Conférence) | CIRM H

Multi angle

Ginzburg-Landau type equations are models for superconductivity, superfluidity, Bose-Einstein condensation, etc. A crucial feature is the presence of quantized vortices, which are topological zeroes of the complex-valued solutions. We will present a new result on the derivation of a mean-field limit equation for the dynamics of many vortices starting from the parabolic Ginzburg-Landau equation or the Gross-Pitaevskii (=Schrodinger Ginzburg-Landau) equation.[-]
Ginzburg-Landau type equations are models for superconductivity, superfluidity, Bose-Einstein condensation, etc. A crucial feature is the presence of quantized vortices, which are topological zeroes of the complex-valued solutions. We will present a new result on the derivation of a mean-field limit equation for the dynamics of many vortices starting from the parabolic Ginzburg-Landau equation or the Gross-Pitaevskii (=Schrodinger Ginzb...[+]

35Q55 ; 35Q56 ; 82D55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite temperature. We will also describe the numerical methods which have been developed for those models in the framework of the ANR project Becasim. These are joint works with Reika Fukuizumi, Arnaud Debussche, and Romain Poncet.[-]
We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite ...[+]

35Q55 ; 60H15 ; 65M06

Sélection Signaler une erreur