Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The quantisation of the spectral action for spectral triples remains a largely open problem. Even within a perturbative framework, serious challenges arise when in the presence of non-abelian gauge symmetries. This is precisely where the Batalin–Vilkovisky (BV) formalism comes into play: a powerful tool specifically designed to handle the perturbative quantisation of gauge theories. The central question I will address is whether it is possible to develop a BV formalism entirely within the framework of noncommutative geometry (NCG). After a brief introduction to the key ideas behind BV quantisation, I will report on recent progress toward this goal, showing that the BV formalism can be fully formulated within the language of NCG in the case of finite spectral triples.
[-]
The quantisation of the spectral action for spectral triples remains a largely open problem. Even within a perturbative framework, serious challenges arise when in the presence of non-abelian gauge symmetries. This is precisely where the Batalin–Vilkovisky (BV) formalism comes into play: a powerful tool specifically designed to handle the perturbative quantisation of gauge theories. The central question I will address is whether it is possible ...
[+]
58B34 ; 81T70 ; 81T13
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The right side of the Baum-Connes conjecture is the $K$-theory of the reduced $C^*$-algebra $C^*_{red} (G)$ of the group $G$. This algebra is the completion of the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^2(G)$. If we complete the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^p(G)$ we will get the Banach algebra $C^{*,p}_{red}(G)$. The $K$-theory of this algebra serves as the right side of the $L^p$-version of the Baum-Connes conjecture. The construction of the left side and the assembly map in this case requires a little bit of techniques of asymptotic morphisms for Banach algebras. A useful category of Banach algebras for this purpose includes all algebras of operators acting on $L^p$-spaces (which may be called $L^p$-algebras).
The current joint work in progress with Guoliang Yu aims at proving the following result:
The $L^p$-version of the Baum-Connes conjecture with coefficients in any $L^p$-algebra is true for any discrete group $G$ which admits an affine-isometric, metrically proper action on the space $X = l^p(Z)$, where $Z$ is a countable discrete set, so that the linear part of this action is induced by a measure-preserving action of $G$ on $Z$.
I will discuss the techniques involved in this work.
[-]
The right side of the Baum-Connes conjecture is the $K$-theory of the reduced $C^*$-algebra $C^*_{red} (G)$ of the group $G$. This algebra is the completion of the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^2(G)$. If we complete the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^p(G)$ we will get the Banach algebra $C^{*,p}_{red}(G)$. The $K$-theory of this algebra serves as the right side of the ...
[+]
19K35 ; 46L80 ; 58B34