En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60G17 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Wavelet: from statistic to geometry - Kerkyacharian, Gérard (Author of the conference) | CIRM H

Multi angle

Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi Polynomials, Tomography and the harmonic analysis of the ball, the study of the Cosmological Microwave Background and the harmonic analysis of the sphere. In these last years it has been proposed to build a Littlewood-Paley analysis and a wavelet theory associated to the Laplacien of a Riemannian manifold or more generally a positive operator associated to a suitable Dirichlet space with a good behavior of the associated heat kernel. This can help to revisit some classical studies of the regularity of Gaussian field.

Keywords: heat kernel - functional calculus - wavelet - Gaussian process[-]
Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi ...[+]

43A85 ; 60G15 ; 60G17 ; 58C50

Bookmarks Report an error