En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 43A85 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Hajlasz-Sobolev embeddings. Our main observation shows that, quantitatively, the rate of the convergence $\left\|u_k\right\|_{K R} \longrightarrow 0$ depends on an interplay between geometric doubling and measure doubling/halving exponents. The "more homogeneous" is the space, the sharper are the results.[-]
The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Ha...[+]

42C15 ; 43A85 ; 46E35 ; 47B10 ; 54E35 ; 46B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Wavelet: from statistic to geometry - Kerkyacharian, Gérard (Auteur de la Conférence) | CIRM H

Multi angle

Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi Polynomials, Tomography and the harmonic analysis of the ball, the study of the Cosmological Microwave Background and the harmonic analysis of the sphere. In these last years it has been proposed to build a Littlewood-Paley analysis and a wavelet theory associated to the Laplacien of a Riemannian manifold or more generally a positive operator associated to a suitable Dirichlet space with a good behavior of the associated heat kernel. This can help to revisit some classical studies of the regularity of Gaussian field.

Keywords: heat kernel - functional calculus - wavelet - Gaussian process[-]
Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi ...[+]

43A85 ; 60G15 ; 60G17 ; 58C50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform plays a fundamental role. In the geometric situation this role is given to some "Laplacian operator" with some properties.
In the last part we will show that the previous theory could help to revisit the topic of regularity of Gaussian processes, and to give a criterium only based on the regularity of the covariance operator.[-]
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform ...[+]

42C15 ; 43A85 ; 46E35 ; 58J35 ; 43A80 ; 62G05 ; 62G10 ; 62G20

Sélection Signaler une erreur