En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 65C60 14 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
discrepancy, optimal design, Latin Hypercube Sampling, computer experiment

68U07 ; 65C60 ; 62L05 ; 62K15 ; 62k20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Rare event simulation for molecular dynamics - Guyader, Arnaud (Author of the conference) | CIRM H

Multi angle

This talk is devoted to the presentation of algorithms for simulating rare events in a molecular dynamics context, e.g., the simulation of reactive paths. We will consider $\mathbb{R}^d$ as the space of configurations for a given system, where the probability of a specific configuration is given by a Gibbs measure depending on a temperature parameter. The dynamics of the system is given by an overdamped Langevin (or gradient) equation. The problem is to find how the system can evolve from a local minimum of the potential to another, following the above dynamics. After a brief overview of classical Monte Carlo methods, we will expose recent results on adaptive multilevel splitting techniques.[-]
This talk is devoted to the presentation of algorithms for simulating rare events in a molecular dynamics context, e.g., the simulation of reactive paths. We will consider $\mathbb{R}^d$ as the space of configurations for a given system, where the probability of a specific configuration is given by a Gibbs measure depending on a temperature parameter. The dynamics of the system is given by an overdamped Langevin (or gradient) equation. The ...[+]

65C05 ; 65C60 ; 65C35 ; 62L12 ; 62D05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bayesian computational methods - Robert, Christian P. (Author of the conference) | CIRM H

Multi angle

This is a short introduction to the many directions of current research in Bayesian computational statistics, from accelerating MCMC algorithms, to using partly deterministic Markov processes like the bouncy particle and the zigzag samplers, to approximating the target or the proposal distributions in such methods. The main illustration focuses on the evaluation of normalising constants and ratios of normalising constants.

62C10 ; 65C60 ; 62F15 ; 65C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bayesian computation with INLA - Rue, Havard (Author of the conference) | CIRM H

Multi angle

This talk focuses on the estimation of the distribution of unobserved nodes in large random graphs from the observation of very few edges. These graphs naturally model tournaments involving a large number of players (the nodes) where the ability to win of each player is unknown. The players are only partially observed through discrete valued scores (edges) describing the results of contests between players. In this very sparse setting, we present the first nonasymptotic risk bounds for maximum likelihood estimators (MLE) of the unknown distribution of the nodes. The proof relies on the construction of a graphical model encoding conditional dependencies that is extremely efficient to study n-regular graphs obtained using a round-robin scheduling. This graphical model allows to prove geometric loss of memory properties and deduce the asymptotic behavior of the likelihood function. Following a classical construction in learning theory, the asymptotic likelihood is used to define a measure of performance for the MLE. Risk bounds for the MLE are finally obtained by subgaussian deviation results derived from concentration inequalities for Markov chains applied to our graphical model.[-]
This talk focuses on the estimation of the distribution of unobserved nodes in large random graphs from the observation of very few edges. These graphs naturally model tournaments involving a large number of players (the nodes) where the ability to win of each player is unknown. The players are only partially observed through discrete valued scores (edges) describing the results of contests between players. In this very sparse setting, we ...[+]

62F15 ; 62C10 ; 65C60 ; 65C40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Model assessment, selection and averaging - Vehtari, Aki (Author of the conference) | CIRM H

Multi angle

The tutorial covers cross-validation, and projection predictive approaches for model assessment, selection and inference after model selection and Bayesian stacking for model averaging. The talk is accompanied with R notebooks using rstanarm, bayesplot, loo, and projpred packages.

62C10 ; 62F15 ; 65C60 ; 62M20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We consider the convergence of the iterative projected gradient (IPG) algorithm for arbitrary (typically nonconvex) sets and when both the gradient and projection oracles are only computed approximately. We consider different notions of approximation of which we show that the Progressive Fixed Precision (PFP) and (1+epsilon) optimal oracles can achieve the same accuracy as for the exact IPG algorithm. We also show that the former scheme is also able to maintain the (linear) rate of convergence of the exact algorithm, under the same embedding assumption, while the latter requires a stronger embedding condition, moderate compression ratios and typically exhibits slower convergence. We apply our results to accelerate solving a class of data driven compressed sensing problems, where we replace iterative exhaustive searches over large datasets by fast approximate nearest neighbour search strategies based on the cover tree data structure. Finally, if there is time we will give examples of this theory applied in practice for rapid enhanced solutions to an emerging MRI protocol called magnetic resonance fingerprinting for quantitative MRI.[-]
We consider the convergence of the iterative projected gradient (IPG) algorithm for arbitrary (typically nonconvex) sets and when both the gradient and projection oracles are only computed approximately. We consider different notions of approximation of which we show that the Progressive Fixed Precision (PFP) and (1+epsilon) optimal oracles can achieve the same accuracy as for the exact IPG algorithm. We also show that the former scheme is also ...[+]

65C60 ; 62D05 ; 94A12

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments.[-]
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...[+]

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Ill-posed linear inverse problems that combine knowledge of the forward measurement model with prior models arise frequently in various applications, from computational photography to medical imaging. Recent research has focused on solving these problems with score-based generative models (SGMs) that produce perceptually plausible images, especially in inpainting problems. In this study, we exploit the particular structure of the prior defined in the SGM to formulate recovery in a Bayesian framework as a Feynman–Kac model adapted from the forward diffusion model used to construct score-based diffusion. To solve this Feynman–Kac problem, we propose the use of Sequential Monte Carlo methods. The proposed algorithm, MCGdiff, is shown to be theoretically grounded and we provide numerical simulations showing that it outperforms competing baselines when dealing with ill-posed inverse problems.[-]
Ill-posed linear inverse problems that combine knowledge of the forward measurement model with prior models arise frequently in various applications, from computational photography to medical imaging. Recent research has focused on solving these problems with score-based generative models (SGMs) that produce perceptually plausible images, especially in inpainting problems. In this study, we exploit the particular structure of the prior defined ...[+]

62F15 ; 65C05 ; 65C60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Approximate Bayesian computation (ABC) techniques, also known as likelihood-free methods, have become a standard tool for the analysis of complex models, primarily in population genetics. The development of new ABC methodologies is undergoing a rapid increase in the past years, as shown by multiple publications, conferences and softwares. In this lecture, we introduce some recent advances on ABC techniques, notably for model choice problems.

62F15 ; 65C60

Bookmarks Report an error