En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Rigo, Michel 6 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for low complexity subshifts has become very active in the last five years. Actually, for zero entropy subshift, this group is much more tame than in the SFT case. In a first lecture we will recall some striking property of this group for subshift of finite type. The second lecture is devoted to the description of this group for classical minimal sub shifts of zero entropy with sublinear complexity and for the family of Toeplitz subshifts. The last lecture concerns the algebraic properties of the automorphism group for subshifts with sub-exponential complexity. We will also explain why sonic group like the Baumslag-Solitar $BS(1,n)$ or $SL(d,Z), d >2$, can not embed into an automorphism group of a zero entropy subshift.[-]
An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for ...[+]

37B10 ; 37B50 ; 37B15 ; 68Q80

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The theorem of Büchi-Bruyère states that a subset of $N^d$ is $b$-recognizable if and only if it is $b$-definable. As a corollary, the first-order theory of $(N,+,V_b)$ is decidable (where $V_b(n)$ is the largest power of the base $b$ dividing $n$). This classical result is a powerful tool in order to show that many properties of $b$-automatic sequences are decidable. The first part of my lecture will be devoted to presenting this result and its applications to $b$-automatic sequences. Then I will move to $b$-regular sequences, which can be viewed as a generalization of $b$-automatic sequences to integer-valued sequences. I will explain bow first-order logic can be used to show that many enumeration problems of $b$-automatic sequences give rise to corresponding $b$-regular sequences. Finally, I will consider more general frameworks than integer bases and (try to) give a state of the art of the research in this domain.[-]
The theorem of Büchi-Bruyère states that a subset of $N^d$ is $b$-recognizable if and only if it is $b$-definable. As a corollary, the first-order theory of $(N,+,V_b)$ is decidable (where $V_b(n)$ is the largest power of the base $b$ dividing $n$). This classical result is a powerful tool in order to show that many properties of $b$-automatic sequences are decidable. The first part of my lecture will be devoted to presenting this result and its ...[+]

68R15 ; 11B85 ; 68Q45 ; 03B25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words.
In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff's game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review some of their characterizations (in terms of morphisms, finiteness of their k-kernel,...). These sequences take values in a finite set but the Sprague-Grundy function of a game, such as Nim of Wythoff, is usually unbounded. This provides a motivation to introduce k-regular sequences (in the sense of Allouche and Shallit) whose k-kernel is not finite, but finitely generated.
In the second lecture, games played on several piles of token naturally give rise to a multi-dimensional setting. Thus, we reconsider k-automatic and k-regular sequences in this extended framework. In particular, determining the structure of the bidimensional array encoding the (loosing) P-positions of the Wythoff's game is a long-standing and challenging problem in CGT. Wythoff's game is linked to non-standard numeration system: P-positions can be determined by writing those in the Fibonacci system. Next, we present the concept of shape-symmetric morphism: instead of iterating a morphism where images of letters are (hyper-)cubes of a fixed length k, one can generalize the procedure to images of various parallelepipedic shape. The shape-symmetry condition introduced twenty years ago by Maes permits to have well-defined fixed point.
In the last lecture, we move to generalized numeration systems: abstract numeration systems (built on a regular language) and link them to morphic (multidimensional) words. In particular, pictures obtained by shape-symmetric morphisms coincide with automatic sequences associated with an abstract numeration system. We conclude these lectures with some work in progress about games with a finite rule-set. This permits us to discuss a bit Presburger definable sets.[-]
The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words.
In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sprague-Grundy function, Wythoff's game, ...). We also review some concepts from combinatorics on words. We thus introduce the well-known k-automatic sequences and review ...[+]

91A46 ; 68R15 ; 68Q45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Subshifts of finite type are of high interest from a computational point of view, since they can be described by a finite amount of information - a set of forbidden patterns that defines the subshift - and thus decidability and algorithmic questions can be addressed. Given an SFT $X$, the simplest question one can formulate is the following: does $X$ contain a configuration? This is the so-called domino problem, or emptiness problem: for a given finitely presented group $0$, is there an algorithm that determines if the group $G$ is tilable with a finite set of tiles? In this lecture I will start with a presentation of two different proofs of the undecidability of the domino problem on $Z^2$. Then we will discuss the case of finitely generated groups. Finally, the emptiness problem for general subshifts will be tackled.[-]
Subshifts of finite type are of high interest from a computational point of view, since they can be described by a finite amount of information - a set of forbidden patterns that defines the subshift - and thus decidability and algorithmic questions can be addressed. Given an SFT $X$, the simplest question one can formulate is the following: does $X$ contain a configuration? This is the so-called domino problem, or emptiness problem: for a given ...[+]

68Q45 ; 03B25 ; 37B50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Amenable groups - Lecture 2 - Bartholdi, Laurent (Author of the conference) | CIRM H

Multi angle

I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: Means, Folner sets, random walks, and paradoxical decompositions.
Lecture 2. I will describe recent work by de la Salle et al. leading to a quite general criterion for amenability, as well as some still open problems. In particular, I will show that full topological groups of minimal Z-shifts are amenable.
Lecture 3. I will explain links between amenability and cellular automata, in particular the "Garden of Eden" properties by Moore and Myhill: there is a characterization of amenable groups in terms of whether these classical theorems still hold. [-]
I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: ...[+]

37B15 ; 37B10 ; 43A07 ; 68Q80

Bookmarks Report an error