En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Ahlgren, Scott 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is non-trivial; the proof relies on power savings estimates for weighted sums of generalized Kloosterman sums which follow from spectral methods.[-]
We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is ...[+]

11F37 ; 11P82

Bookmarks Report an error